ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isbth GIF version

Theorem isbth 6855
Description: Schroeder-Bernstein Theorem. Theorem 18 of [Suppes] p. 95. This theorem states that if set 𝐴 is smaller (has lower cardinality) than 𝐵 and vice-versa, then 𝐴 and 𝐵 are equinumerous (have the same cardinality). The interesting thing is that this can be proved without invoking the Axiom of Choice, as we do here, but the proof as you can see is quite difficult. (The theorem can be proved more easily if we allow AC.) The main proof consists of lemmas sbthlem1 6845 through sbthlemi10 6854; this final piece mainly changes bound variables to eliminate the hypotheses of sbthlemi10 6854. We follow closely the proof in Suppes, which you should consult to understand our proof at a higher level. Note that Suppes' proof, which is credited to J. M. Whitaker, does not require the Axiom of Infinity. The proof does require the law of the excluded middle which cannot be avoided as shown at exmidsbthr 13218. (Contributed by NM, 8-Jun-1998.)
Assertion
Ref Expression
isbth ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → 𝐴𝐵)

Proof of Theorem isbth
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 520 . 2 ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → 𝐴𝐵)
2 simprr 521 . 2 ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → 𝐵𝐴)
3 reldom 6639 . . . . 5 Rel ≼
43brrelex1i 4582 . . . 4 (𝐵𝐴𝐵 ∈ V)
52, 4syl 14 . . 3 ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → 𝐵 ∈ V)
6 breq2 3933 . . . . . 6 (𝑤 = 𝐵 → (𝐴𝑤𝐴𝐵))
7 breq1 3932 . . . . . 6 (𝑤 = 𝐵 → (𝑤𝐴𝐵𝐴))
86, 7anbi12d 464 . . . . 5 (𝑤 = 𝐵 → ((𝐴𝑤𝑤𝐴) ↔ (𝐴𝐵𝐵𝐴)))
9 breq2 3933 . . . . 5 (𝑤 = 𝐵 → (𝐴𝑤𝐴𝐵))
108, 9imbi12d 233 . . . 4 (𝑤 = 𝐵 → (((𝐴𝑤𝑤𝐴) → 𝐴𝑤) ↔ ((𝐴𝐵𝐵𝐴) → 𝐴𝐵)))
1110adantl 275 . . 3 (((EXMID ∧ (𝐴𝐵𝐵𝐴)) ∧ 𝑤 = 𝐵) → (((𝐴𝑤𝑤𝐴) → 𝐴𝑤) ↔ ((𝐴𝐵𝐵𝐴) → 𝐴𝐵)))
123brrelex1i 4582 . . . . 5 (𝐴𝐵𝐴 ∈ V)
131, 12syl 14 . . . 4 ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → 𝐴 ∈ V)
14 breq1 3932 . . . . . . 7 (𝑧 = 𝐴 → (𝑧𝑤𝐴𝑤))
15 breq2 3933 . . . . . . 7 (𝑧 = 𝐴 → (𝑤𝑧𝑤𝐴))
1614, 15anbi12d 464 . . . . . 6 (𝑧 = 𝐴 → ((𝑧𝑤𝑤𝑧) ↔ (𝐴𝑤𝑤𝐴)))
17 breq1 3932 . . . . . 6 (𝑧 = 𝐴 → (𝑧𝑤𝐴𝑤))
1816, 17imbi12d 233 . . . . 5 (𝑧 = 𝐴 → (((𝑧𝑤𝑤𝑧) → 𝑧𝑤) ↔ ((𝐴𝑤𝑤𝐴) → 𝐴𝑤)))
1918adantl 275 . . . 4 (((EXMID ∧ (𝐴𝐵𝐵𝐴)) ∧ 𝑧 = 𝐴) → (((𝑧𝑤𝑤𝑧) → 𝑧𝑤) ↔ ((𝐴𝑤𝑤𝐴) → 𝐴𝑤)))
20 vex 2689 . . . . . . 7 𝑧 ∈ V
21 sseq1 3120 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦𝑧𝑥𝑧))
22 imaeq2 4877 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑓𝑦) = (𝑓𝑥))
2322difeq2d 3194 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑤 ∖ (𝑓𝑦)) = (𝑤 ∖ (𝑓𝑥)))
2423imaeq2d 4881 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑔 “ (𝑤 ∖ (𝑓𝑦))) = (𝑔 “ (𝑤 ∖ (𝑓𝑥))))
25 difeq2 3188 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑧𝑦) = (𝑧𝑥))
2624, 25sseq12d 3128 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦) ↔ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥)))
2721, 26anbi12d 464 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦)) ↔ (𝑥𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥))))
2827cbvabv 2264 . . . . . . 7 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))} = {𝑥 ∣ (𝑥𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥))}
29 eqid 2139 . . . . . . 7 ((𝑓 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}) ∪ (𝑔 ↾ (𝑧 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}))) = ((𝑓 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}) ∪ (𝑔 ↾ (𝑧 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))})))
30 vex 2689 . . . . . . 7 𝑤 ∈ V
3120, 28, 29, 30sbthlemi10 6854 . . . . . 6 ((EXMID ∧ (𝑧𝑤𝑤𝑧)) → 𝑧𝑤)
3231ex 114 . . . . 5 (EXMID → ((𝑧𝑤𝑤𝑧) → 𝑧𝑤))
3332adantr 274 . . . 4 ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → ((𝑧𝑤𝑤𝑧) → 𝑧𝑤))
3413, 19, 33vtocld 2738 . . 3 ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → ((𝐴𝑤𝑤𝐴) → 𝐴𝑤))
355, 11, 34vtocld 2738 . 2 ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → ((𝐴𝐵𝐵𝐴) → 𝐴𝐵))
361, 2, 35mp2and 429 1 ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  {cab 2125  Vcvv 2686  cdif 3068  cun 3069  wss 3071   cuni 3736   class class class wbr 3929  EXMIDwem 4118  ccnv 4538  cres 4541  cima 4542  cen 6632  cdom 6633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-exmid 4119  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-en 6635  df-dom 6636
This theorem is referenced by:  exmidsbth  13219
  Copyright terms: Public domain W3C validator