ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isbth GIF version

Theorem isbth 7084
Description: Schroeder-Bernstein Theorem. Theorem 18 of [Suppes] p. 95. This theorem states that if set 𝐴 is smaller (has lower cardinality) than 𝐵 and vice-versa, then 𝐴 and 𝐵 are equinumerous (have the same cardinality). The interesting thing is that this can be proved without invoking the Axiom of Choice, as we do here, but the proof as you can see is quite difficult. (The theorem can be proved more easily if we allow AC.) The main proof consists of lemmas sbthlem1 7074 through sbthlemi10 7083; this final piece mainly changes bound variables to eliminate the hypotheses of sbthlemi10 7083. We follow closely the proof in Suppes, which you should consult to understand our proof at a higher level. Note that Suppes' proof, which is credited to J. M. Whitaker, does not require the Axiom of Infinity. The proof does require the law of the excluded middle which cannot be avoided as shown at exmidsbthr 16103. (Contributed by NM, 8-Jun-1998.)
Assertion
Ref Expression
isbth ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → 𝐴𝐵)

Proof of Theorem isbth
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 529 . 2 ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → 𝐴𝐵)
2 simprr 531 . 2 ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → 𝐵𝐴)
3 reldom 6845 . . . . 5 Rel ≼
43brrelex1i 4726 . . . 4 (𝐵𝐴𝐵 ∈ V)
52, 4syl 14 . . 3 ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → 𝐵 ∈ V)
6 breq2 4055 . . . . . 6 (𝑤 = 𝐵 → (𝐴𝑤𝐴𝐵))
7 breq1 4054 . . . . . 6 (𝑤 = 𝐵 → (𝑤𝐴𝐵𝐴))
86, 7anbi12d 473 . . . . 5 (𝑤 = 𝐵 → ((𝐴𝑤𝑤𝐴) ↔ (𝐴𝐵𝐵𝐴)))
9 breq2 4055 . . . . 5 (𝑤 = 𝐵 → (𝐴𝑤𝐴𝐵))
108, 9imbi12d 234 . . . 4 (𝑤 = 𝐵 → (((𝐴𝑤𝑤𝐴) → 𝐴𝑤) ↔ ((𝐴𝐵𝐵𝐴) → 𝐴𝐵)))
1110adantl 277 . . 3 (((EXMID ∧ (𝐴𝐵𝐵𝐴)) ∧ 𝑤 = 𝐵) → (((𝐴𝑤𝑤𝐴) → 𝐴𝑤) ↔ ((𝐴𝐵𝐵𝐴) → 𝐴𝐵)))
123brrelex1i 4726 . . . . 5 (𝐴𝐵𝐴 ∈ V)
131, 12syl 14 . . . 4 ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → 𝐴 ∈ V)
14 breq1 4054 . . . . . . 7 (𝑧 = 𝐴 → (𝑧𝑤𝐴𝑤))
15 breq2 4055 . . . . . . 7 (𝑧 = 𝐴 → (𝑤𝑧𝑤𝐴))
1614, 15anbi12d 473 . . . . . 6 (𝑧 = 𝐴 → ((𝑧𝑤𝑤𝑧) ↔ (𝐴𝑤𝑤𝐴)))
17 breq1 4054 . . . . . 6 (𝑧 = 𝐴 → (𝑧𝑤𝐴𝑤))
1816, 17imbi12d 234 . . . . 5 (𝑧 = 𝐴 → (((𝑧𝑤𝑤𝑧) → 𝑧𝑤) ↔ ((𝐴𝑤𝑤𝐴) → 𝐴𝑤)))
1918adantl 277 . . . 4 (((EXMID ∧ (𝐴𝐵𝐵𝐴)) ∧ 𝑧 = 𝐴) → (((𝑧𝑤𝑤𝑧) → 𝑧𝑤) ↔ ((𝐴𝑤𝑤𝐴) → 𝐴𝑤)))
20 vex 2776 . . . . . . 7 𝑧 ∈ V
21 sseq1 3220 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦𝑧𝑥𝑧))
22 imaeq2 5027 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑓𝑦) = (𝑓𝑥))
2322difeq2d 3295 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑤 ∖ (𝑓𝑦)) = (𝑤 ∖ (𝑓𝑥)))
2423imaeq2d 5031 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑔 “ (𝑤 ∖ (𝑓𝑦))) = (𝑔 “ (𝑤 ∖ (𝑓𝑥))))
25 difeq2 3289 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑧𝑦) = (𝑧𝑥))
2624, 25sseq12d 3228 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦) ↔ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥)))
2721, 26anbi12d 473 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦)) ↔ (𝑥𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥))))
2827cbvabv 2331 . . . . . . 7 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))} = {𝑥 ∣ (𝑥𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥))}
29 eqid 2206 . . . . . . 7 ((𝑓 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}) ∪ (𝑔 ↾ (𝑧 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}))) = ((𝑓 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}) ∪ (𝑔 ↾ (𝑧 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))})))
30 vex 2776 . . . . . . 7 𝑤 ∈ V
3120, 28, 29, 30sbthlemi10 7083 . . . . . 6 ((EXMID ∧ (𝑧𝑤𝑤𝑧)) → 𝑧𝑤)
3231ex 115 . . . . 5 (EXMID → ((𝑧𝑤𝑤𝑧) → 𝑧𝑤))
3332adantr 276 . . . 4 ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → ((𝑧𝑤𝑤𝑧) → 𝑧𝑤))
3413, 19, 33vtocld 2827 . . 3 ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → ((𝐴𝑤𝑤𝐴) → 𝐴𝑤))
355, 11, 34vtocld 2827 . 2 ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → ((𝐴𝐵𝐵𝐴) → 𝐴𝐵))
361, 2, 35mp2and 433 1 ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  {cab 2192  Vcvv 2773  cdif 3167  cun 3168  wss 3170   cuni 3856   class class class wbr 4051  EXMIDwem 4246  ccnv 4682  cres 4685  cima 4686  cen 6838  cdom 6839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-exmid 4247  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-en 6841  df-dom 6842
This theorem is referenced by:  exmidsbth  16104
  Copyright terms: Public domain W3C validator