Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  isbth GIF version

Theorem isbth 6904
 Description: Schroeder-Bernstein Theorem. Theorem 18 of [Suppes] p. 95. This theorem states that if set 𝐴 is smaller (has lower cardinality) than 𝐵 and vice-versa, then 𝐴 and 𝐵 are equinumerous (have the same cardinality). The interesting thing is that this can be proved without invoking the Axiom of Choice, as we do here, but the proof as you can see is quite difficult. (The theorem can be proved more easily if we allow AC.) The main proof consists of lemmas sbthlem1 6894 through sbthlemi10 6903; this final piece mainly changes bound variables to eliminate the hypotheses of sbthlemi10 6903. We follow closely the proof in Suppes, which you should consult to understand our proof at a higher level. Note that Suppes' proof, which is credited to J. M. Whitaker, does not require the Axiom of Infinity. The proof does require the law of the excluded middle which cannot be avoided as shown at exmidsbthr 13557. (Contributed by NM, 8-Jun-1998.)
Assertion
Ref Expression
isbth ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → 𝐴𝐵)

Proof of Theorem isbth
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 521 . 2 ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → 𝐴𝐵)
2 simprr 522 . 2 ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → 𝐵𝐴)
3 reldom 6683 . . . . 5 Rel ≼
43brrelex1i 4626 . . . 4 (𝐵𝐴𝐵 ∈ V)
52, 4syl 14 . . 3 ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → 𝐵 ∈ V)
6 breq2 3969 . . . . . 6 (𝑤 = 𝐵 → (𝐴𝑤𝐴𝐵))
7 breq1 3968 . . . . . 6 (𝑤 = 𝐵 → (𝑤𝐴𝐵𝐴))
86, 7anbi12d 465 . . . . 5 (𝑤 = 𝐵 → ((𝐴𝑤𝑤𝐴) ↔ (𝐴𝐵𝐵𝐴)))
9 breq2 3969 . . . . 5 (𝑤 = 𝐵 → (𝐴𝑤𝐴𝐵))
108, 9imbi12d 233 . . . 4 (𝑤 = 𝐵 → (((𝐴𝑤𝑤𝐴) → 𝐴𝑤) ↔ ((𝐴𝐵𝐵𝐴) → 𝐴𝐵)))
1110adantl 275 . . 3 (((EXMID ∧ (𝐴𝐵𝐵𝐴)) ∧ 𝑤 = 𝐵) → (((𝐴𝑤𝑤𝐴) → 𝐴𝑤) ↔ ((𝐴𝐵𝐵𝐴) → 𝐴𝐵)))
123brrelex1i 4626 . . . . 5 (𝐴𝐵𝐴 ∈ V)
131, 12syl 14 . . . 4 ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → 𝐴 ∈ V)
14 breq1 3968 . . . . . . 7 (𝑧 = 𝐴 → (𝑧𝑤𝐴𝑤))
15 breq2 3969 . . . . . . 7 (𝑧 = 𝐴 → (𝑤𝑧𝑤𝐴))
1614, 15anbi12d 465 . . . . . 6 (𝑧 = 𝐴 → ((𝑧𝑤𝑤𝑧) ↔ (𝐴𝑤𝑤𝐴)))
17 breq1 3968 . . . . . 6 (𝑧 = 𝐴 → (𝑧𝑤𝐴𝑤))
1816, 17imbi12d 233 . . . . 5 (𝑧 = 𝐴 → (((𝑧𝑤𝑤𝑧) → 𝑧𝑤) ↔ ((𝐴𝑤𝑤𝐴) → 𝐴𝑤)))
1918adantl 275 . . . 4 (((EXMID ∧ (𝐴𝐵𝐵𝐴)) ∧ 𝑧 = 𝐴) → (((𝑧𝑤𝑤𝑧) → 𝑧𝑤) ↔ ((𝐴𝑤𝑤𝐴) → 𝐴𝑤)))
20 vex 2715 . . . . . . 7 𝑧 ∈ V
21 sseq1 3151 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦𝑧𝑥𝑧))
22 imaeq2 4921 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑓𝑦) = (𝑓𝑥))
2322difeq2d 3225 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑤 ∖ (𝑓𝑦)) = (𝑤 ∖ (𝑓𝑥)))
2423imaeq2d 4925 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑔 “ (𝑤 ∖ (𝑓𝑦))) = (𝑔 “ (𝑤 ∖ (𝑓𝑥))))
25 difeq2 3219 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑧𝑦) = (𝑧𝑥))
2624, 25sseq12d 3159 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦) ↔ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥)))
2721, 26anbi12d 465 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦)) ↔ (𝑥𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥))))
2827cbvabv 2282 . . . . . . 7 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))} = {𝑥 ∣ (𝑥𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑥))) ⊆ (𝑧𝑥))}
29 eqid 2157 . . . . . . 7 ((𝑓 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}) ∪ (𝑔 ↾ (𝑧 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}))) = ((𝑓 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))}) ∪ (𝑔 ↾ (𝑧 {𝑦 ∣ (𝑦𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓𝑦))) ⊆ (𝑧𝑦))})))
30 vex 2715 . . . . . . 7 𝑤 ∈ V
3120, 28, 29, 30sbthlemi10 6903 . . . . . 6 ((EXMID ∧ (𝑧𝑤𝑤𝑧)) → 𝑧𝑤)
3231ex 114 . . . . 5 (EXMID → ((𝑧𝑤𝑤𝑧) → 𝑧𝑤))
3332adantr 274 . . . 4 ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → ((𝑧𝑤𝑤𝑧) → 𝑧𝑤))
3413, 19, 33vtocld 2764 . . 3 ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → ((𝐴𝑤𝑤𝐴) → 𝐴𝑤))
355, 11, 34vtocld 2764 . 2 ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → ((𝐴𝐵𝐵𝐴) → 𝐴𝐵))
361, 2, 35mp2and 430 1 ((EXMID ∧ (𝐴𝐵𝐵𝐴)) → 𝐴𝐵)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1335   ∈ wcel 2128  {cab 2143  Vcvv 2712   ∖ cdif 3099   ∪ cun 3100   ⊆ wss 3102  ∪ cuni 3772   class class class wbr 3965  EXMIDwem 4154  ◡ccnv 4582   ↾ cres 4585   “ cima 4586   ≈ cen 6676   ≼ cdom 6677 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392 This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-exmid 4155  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-en 6679  df-dom 6680 This theorem is referenced by:  exmidsbth  13558
 Copyright terms: Public domain W3C validator