Step | Hyp | Ref
| Expression |
1 | | simprl 526 |
. 2
⊢
((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) → 𝐴 ≼ 𝐵) |
2 | | simprr 527 |
. 2
⊢
((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) → 𝐵 ≼ 𝐴) |
3 | | reldom 6723 |
. . . . 5
⊢ Rel
≼ |
4 | 3 | brrelex1i 4654 |
. . . 4
⊢ (𝐵 ≼ 𝐴 → 𝐵 ∈ V) |
5 | 2, 4 | syl 14 |
. . 3
⊢
((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) → 𝐵 ∈ V) |
6 | | breq2 3993 |
. . . . . 6
⊢ (𝑤 = 𝐵 → (𝐴 ≼ 𝑤 ↔ 𝐴 ≼ 𝐵)) |
7 | | breq1 3992 |
. . . . . 6
⊢ (𝑤 = 𝐵 → (𝑤 ≼ 𝐴 ↔ 𝐵 ≼ 𝐴)) |
8 | 6, 7 | anbi12d 470 |
. . . . 5
⊢ (𝑤 = 𝐵 → ((𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴) ↔ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴))) |
9 | | breq2 3993 |
. . . . 5
⊢ (𝑤 = 𝐵 → (𝐴 ≈ 𝑤 ↔ 𝐴 ≈ 𝐵)) |
10 | 8, 9 | imbi12d 233 |
. . . 4
⊢ (𝑤 = 𝐵 → (((𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴) → 𝐴 ≈ 𝑤) ↔ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵))) |
11 | 10 | adantl 275 |
. . 3
⊢
(((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) ∧ 𝑤 = 𝐵) → (((𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴) → 𝐴 ≈ 𝑤) ↔ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵))) |
12 | 3 | brrelex1i 4654 |
. . . . 5
⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
13 | 1, 12 | syl 14 |
. . . 4
⊢
((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) → 𝐴 ∈ V) |
14 | | breq1 3992 |
. . . . . . 7
⊢ (𝑧 = 𝐴 → (𝑧 ≼ 𝑤 ↔ 𝐴 ≼ 𝑤)) |
15 | | breq2 3993 |
. . . . . . 7
⊢ (𝑧 = 𝐴 → (𝑤 ≼ 𝑧 ↔ 𝑤 ≼ 𝐴)) |
16 | 14, 15 | anbi12d 470 |
. . . . . 6
⊢ (𝑧 = 𝐴 → ((𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧) ↔ (𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴))) |
17 | | breq1 3992 |
. . . . . 6
⊢ (𝑧 = 𝐴 → (𝑧 ≈ 𝑤 ↔ 𝐴 ≈ 𝑤)) |
18 | 16, 17 | imbi12d 233 |
. . . . 5
⊢ (𝑧 = 𝐴 → (((𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧) → 𝑧 ≈ 𝑤) ↔ ((𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴) → 𝐴 ≈ 𝑤))) |
19 | 18 | adantl 275 |
. . . 4
⊢
(((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) ∧ 𝑧 = 𝐴) → (((𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧) → 𝑧 ≈ 𝑤) ↔ ((𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴) → 𝐴 ≈ 𝑤))) |
20 | | vex 2733 |
. . . . . . 7
⊢ 𝑧 ∈ V |
21 | | sseq1 3170 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝑦 ⊆ 𝑧 ↔ 𝑥 ⊆ 𝑧)) |
22 | | imaeq2 4949 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → (𝑓 “ 𝑦) = (𝑓 “ 𝑥)) |
23 | 22 | difeq2d 3245 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (𝑤 ∖ (𝑓 “ 𝑦)) = (𝑤 ∖ (𝑓 “ 𝑥))) |
24 | 23 | imaeq2d 4953 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) = (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑥)))) |
25 | | difeq2 3239 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝑧 ∖ 𝑦) = (𝑧 ∖ 𝑥)) |
26 | 24, 25 | sseq12d 3178 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → ((𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦) ↔ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑥))) ⊆ (𝑧 ∖ 𝑥))) |
27 | 21, 26 | anbi12d 470 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → ((𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦)) ↔ (𝑥 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑥))) ⊆ (𝑧 ∖ 𝑥)))) |
28 | 27 | cbvabv 2295 |
. . . . . . 7
⊢ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))} = {𝑥 ∣ (𝑥 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑥))) ⊆ (𝑧 ∖ 𝑥))} |
29 | | eqid 2170 |
. . . . . . 7
⊢ ((𝑓 ↾ ∪ {𝑦
∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))}) ∪ (◡𝑔 ↾ (𝑧 ∖ ∪ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))}))) = ((𝑓 ↾ ∪ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))}) ∪ (◡𝑔 ↾ (𝑧 ∖ ∪ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))}))) |
30 | | vex 2733 |
. . . . . . 7
⊢ 𝑤 ∈ V |
31 | 20, 28, 29, 30 | sbthlemi10 6943 |
. . . . . 6
⊢
((EXMID ∧ (𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧)) → 𝑧 ≈ 𝑤) |
32 | 31 | ex 114 |
. . . . 5
⊢
(EXMID → ((𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧) → 𝑧 ≈ 𝑤)) |
33 | 32 | adantr 274 |
. . . 4
⊢
((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) → ((𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧) → 𝑧 ≈ 𝑤)) |
34 | 13, 19, 33 | vtocld 2782 |
. . 3
⊢
((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) → ((𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴) → 𝐴 ≈ 𝑤)) |
35 | 5, 11, 34 | vtocld 2782 |
. 2
⊢
((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) → ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵)) |
36 | 1, 2, 35 | mp2and 431 |
1
⊢
((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) → 𝐴 ≈ 𝐵) |