| Step | Hyp | Ref
| Expression |
| 1 | | simprl 529 |
. 2
⊢
((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) → 𝐴 ≼ 𝐵) |
| 2 | | simprr 531 |
. 2
⊢
((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) → 𝐵 ≼ 𝐴) |
| 3 | | reldom 6804 |
. . . . 5
⊢ Rel
≼ |
| 4 | 3 | brrelex1i 4706 |
. . . 4
⊢ (𝐵 ≼ 𝐴 → 𝐵 ∈ V) |
| 5 | 2, 4 | syl 14 |
. . 3
⊢
((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) → 𝐵 ∈ V) |
| 6 | | breq2 4037 |
. . . . . 6
⊢ (𝑤 = 𝐵 → (𝐴 ≼ 𝑤 ↔ 𝐴 ≼ 𝐵)) |
| 7 | | breq1 4036 |
. . . . . 6
⊢ (𝑤 = 𝐵 → (𝑤 ≼ 𝐴 ↔ 𝐵 ≼ 𝐴)) |
| 8 | 6, 7 | anbi12d 473 |
. . . . 5
⊢ (𝑤 = 𝐵 → ((𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴) ↔ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴))) |
| 9 | | breq2 4037 |
. . . . 5
⊢ (𝑤 = 𝐵 → (𝐴 ≈ 𝑤 ↔ 𝐴 ≈ 𝐵)) |
| 10 | 8, 9 | imbi12d 234 |
. . . 4
⊢ (𝑤 = 𝐵 → (((𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴) → 𝐴 ≈ 𝑤) ↔ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵))) |
| 11 | 10 | adantl 277 |
. . 3
⊢
(((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) ∧ 𝑤 = 𝐵) → (((𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴) → 𝐴 ≈ 𝑤) ↔ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵))) |
| 12 | 3 | brrelex1i 4706 |
. . . . 5
⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
| 13 | 1, 12 | syl 14 |
. . . 4
⊢
((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) → 𝐴 ∈ V) |
| 14 | | breq1 4036 |
. . . . . . 7
⊢ (𝑧 = 𝐴 → (𝑧 ≼ 𝑤 ↔ 𝐴 ≼ 𝑤)) |
| 15 | | breq2 4037 |
. . . . . . 7
⊢ (𝑧 = 𝐴 → (𝑤 ≼ 𝑧 ↔ 𝑤 ≼ 𝐴)) |
| 16 | 14, 15 | anbi12d 473 |
. . . . . 6
⊢ (𝑧 = 𝐴 → ((𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧) ↔ (𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴))) |
| 17 | | breq1 4036 |
. . . . . 6
⊢ (𝑧 = 𝐴 → (𝑧 ≈ 𝑤 ↔ 𝐴 ≈ 𝑤)) |
| 18 | 16, 17 | imbi12d 234 |
. . . . 5
⊢ (𝑧 = 𝐴 → (((𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧) → 𝑧 ≈ 𝑤) ↔ ((𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴) → 𝐴 ≈ 𝑤))) |
| 19 | 18 | adantl 277 |
. . . 4
⊢
(((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) ∧ 𝑧 = 𝐴) → (((𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧) → 𝑧 ≈ 𝑤) ↔ ((𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴) → 𝐴 ≈ 𝑤))) |
| 20 | | vex 2766 |
. . . . . . 7
⊢ 𝑧 ∈ V |
| 21 | | sseq1 3206 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝑦 ⊆ 𝑧 ↔ 𝑥 ⊆ 𝑧)) |
| 22 | | imaeq2 5005 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → (𝑓 “ 𝑦) = (𝑓 “ 𝑥)) |
| 23 | 22 | difeq2d 3281 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (𝑤 ∖ (𝑓 “ 𝑦)) = (𝑤 ∖ (𝑓 “ 𝑥))) |
| 24 | 23 | imaeq2d 5009 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) = (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑥)))) |
| 25 | | difeq2 3275 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝑧 ∖ 𝑦) = (𝑧 ∖ 𝑥)) |
| 26 | 24, 25 | sseq12d 3214 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → ((𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦) ↔ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑥))) ⊆ (𝑧 ∖ 𝑥))) |
| 27 | 21, 26 | anbi12d 473 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → ((𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦)) ↔ (𝑥 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑥))) ⊆ (𝑧 ∖ 𝑥)))) |
| 28 | 27 | cbvabv 2321 |
. . . . . . 7
⊢ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))} = {𝑥 ∣ (𝑥 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑥))) ⊆ (𝑧 ∖ 𝑥))} |
| 29 | | eqid 2196 |
. . . . . . 7
⊢ ((𝑓 ↾ ∪ {𝑦
∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))}) ∪ (◡𝑔 ↾ (𝑧 ∖ ∪ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))}))) = ((𝑓 ↾ ∪ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))}) ∪ (◡𝑔 ↾ (𝑧 ∖ ∪ {𝑦 ∣ (𝑦 ⊆ 𝑧 ∧ (𝑔 “ (𝑤 ∖ (𝑓 “ 𝑦))) ⊆ (𝑧 ∖ 𝑦))}))) |
| 30 | | vex 2766 |
. . . . . . 7
⊢ 𝑤 ∈ V |
| 31 | 20, 28, 29, 30 | sbthlemi10 7032 |
. . . . . 6
⊢
((EXMID ∧ (𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧)) → 𝑧 ≈ 𝑤) |
| 32 | 31 | ex 115 |
. . . . 5
⊢
(EXMID → ((𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧) → 𝑧 ≈ 𝑤)) |
| 33 | 32 | adantr 276 |
. . . 4
⊢
((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) → ((𝑧 ≼ 𝑤 ∧ 𝑤 ≼ 𝑧) → 𝑧 ≈ 𝑤)) |
| 34 | 13, 19, 33 | vtocld 2816 |
. . 3
⊢
((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) → ((𝐴 ≼ 𝑤 ∧ 𝑤 ≼ 𝐴) → 𝐴 ≈ 𝑤)) |
| 35 | 5, 11, 34 | vtocld 2816 |
. 2
⊢
((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) → ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵)) |
| 36 | 1, 2, 35 | mp2and 433 |
1
⊢
((EXMID ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴)) → 𝐴 ≈ 𝐵) |