ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzuzd GIF version

Theorem frec2uzuzd 10511
Description: The value 𝐺 (see frec2uz0d 10508) at an ordinal natural number is in the upper integers. (Contributed by Jim Kingdon, 16-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
frec2uzzd.a (𝜑𝐴 ∈ ω)
Assertion
Ref Expression
frec2uzuzd (𝜑 → (𝐺𝐴) ∈ (ℤ𝐶))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐺(𝑥)

Proof of Theorem frec2uzuzd
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frec2uzzd.a . 2 (𝜑𝐴 ∈ ω)
2 simpr 110 . . . . 5 ((𝜑𝑦 = 𝐴) → 𝑦 = 𝐴)
32eleq1d 2265 . . . 4 ((𝜑𝑦 = 𝐴) → (𝑦 ∈ ω ↔ 𝐴 ∈ ω))
42fveq2d 5565 . . . . 5 ((𝜑𝑦 = 𝐴) → (𝐺𝑦) = (𝐺𝐴))
54eleq1d 2265 . . . 4 ((𝜑𝑦 = 𝐴) → ((𝐺𝑦) ∈ (ℤ𝐶) ↔ (𝐺𝐴) ∈ (ℤ𝐶)))
63, 5imbi12d 234 . . 3 ((𝜑𝑦 = 𝐴) → ((𝑦 ∈ ω → (𝐺𝑦) ∈ (ℤ𝐶)) ↔ (𝐴 ∈ ω → (𝐺𝐴) ∈ (ℤ𝐶))))
7 fveq2 5561 . . . . . 6 (𝑦 = ∅ → (𝐺𝑦) = (𝐺‘∅))
87eleq1d 2265 . . . . 5 (𝑦 = ∅ → ((𝐺𝑦) ∈ (ℤ𝐶) ↔ (𝐺‘∅) ∈ (ℤ𝐶)))
9 fveq2 5561 . . . . . 6 (𝑦 = 𝑧 → (𝐺𝑦) = (𝐺𝑧))
109eleq1d 2265 . . . . 5 (𝑦 = 𝑧 → ((𝐺𝑦) ∈ (ℤ𝐶) ↔ (𝐺𝑧) ∈ (ℤ𝐶)))
11 fveq2 5561 . . . . . 6 (𝑦 = suc 𝑧 → (𝐺𝑦) = (𝐺‘suc 𝑧))
1211eleq1d 2265 . . . . 5 (𝑦 = suc 𝑧 → ((𝐺𝑦) ∈ (ℤ𝐶) ↔ (𝐺‘suc 𝑧) ∈ (ℤ𝐶)))
13 frec2uz.1 . . . . . . 7 (𝜑𝐶 ∈ ℤ)
14 frec2uz.2 . . . . . . 7 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
1513, 14frec2uz0d 10508 . . . . . 6 (𝜑 → (𝐺‘∅) = 𝐶)
16 uzid 9632 . . . . . . 7 (𝐶 ∈ ℤ → 𝐶 ∈ (ℤ𝐶))
1713, 16syl 14 . . . . . 6 (𝜑𝐶 ∈ (ℤ𝐶))
1815, 17eqeltrd 2273 . . . . 5 (𝜑 → (𝐺‘∅) ∈ (ℤ𝐶))
19 peano2uz 9674 . . . . . . 7 ((𝐺𝑧) ∈ (ℤ𝐶) → ((𝐺𝑧) + 1) ∈ (ℤ𝐶))
2013adantl 277 . . . . . . . . 9 ((𝑧 ∈ ω ∧ 𝜑) → 𝐶 ∈ ℤ)
21 simpl 109 . . . . . . . . 9 ((𝑧 ∈ ω ∧ 𝜑) → 𝑧 ∈ ω)
2220, 14, 21frec2uzsucd 10510 . . . . . . . 8 ((𝑧 ∈ ω ∧ 𝜑) → (𝐺‘suc 𝑧) = ((𝐺𝑧) + 1))
2322eleq1d 2265 . . . . . . 7 ((𝑧 ∈ ω ∧ 𝜑) → ((𝐺‘suc 𝑧) ∈ (ℤ𝐶) ↔ ((𝐺𝑧) + 1) ∈ (ℤ𝐶)))
2419, 23imbitrrid 156 . . . . . 6 ((𝑧 ∈ ω ∧ 𝜑) → ((𝐺𝑧) ∈ (ℤ𝐶) → (𝐺‘suc 𝑧) ∈ (ℤ𝐶)))
2524ex 115 . . . . 5 (𝑧 ∈ ω → (𝜑 → ((𝐺𝑧) ∈ (ℤ𝐶) → (𝐺‘suc 𝑧) ∈ (ℤ𝐶))))
268, 10, 12, 18, 25finds2 4638 . . . 4 (𝑦 ∈ ω → (𝜑 → (𝐺𝑦) ∈ (ℤ𝐶)))
2726com12 30 . . 3 (𝜑 → (𝑦 ∈ ω → (𝐺𝑦) ∈ (ℤ𝐶)))
281, 6, 27vtocld 2816 . 2 (𝜑 → (𝐴 ∈ ω → (𝐺𝐴) ∈ (ℤ𝐶)))
291, 28mpd 13 1 (𝜑 → (𝐺𝐴) ∈ (ℤ𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  c0 3451  cmpt 4095  suc csuc 4401  ωcom 4627  cfv 5259  (class class class)co 5925  freccfrec 6457  1c1 7897   + caddc 7899  cz 9343  cuz 9618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619
This theorem is referenced by:  frec2uzltd  10512  frec2uzrand  10514  frec2uzrdg  10518  frecuzrdgsuc  10523  hashcl  10890  nninfctlemfo  12232  ennnfonelemrn  12661
  Copyright terms: Public domain W3C validator