ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzuzd GIF version

Theorem frec2uzuzd 9712
Description: The value 𝐺 (see frec2uz0d 9709) at an ordinal natural number is in the upper integers. (Contributed by Jim Kingdon, 16-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
frec2uzzd.a (𝜑𝐴 ∈ ω)
Assertion
Ref Expression
frec2uzuzd (𝜑 → (𝐺𝐴) ∈ (ℤ𝐶))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐺(𝑥)

Proof of Theorem frec2uzuzd
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frec2uzzd.a . 2 (𝜑𝐴 ∈ ω)
2 simpr 108 . . . . 5 ((𝜑𝑦 = 𝐴) → 𝑦 = 𝐴)
32eleq1d 2153 . . . 4 ((𝜑𝑦 = 𝐴) → (𝑦 ∈ ω ↔ 𝐴 ∈ ω))
42fveq2d 5260 . . . . 5 ((𝜑𝑦 = 𝐴) → (𝐺𝑦) = (𝐺𝐴))
54eleq1d 2153 . . . 4 ((𝜑𝑦 = 𝐴) → ((𝐺𝑦) ∈ (ℤ𝐶) ↔ (𝐺𝐴) ∈ (ℤ𝐶)))
63, 5imbi12d 232 . . 3 ((𝜑𝑦 = 𝐴) → ((𝑦 ∈ ω → (𝐺𝑦) ∈ (ℤ𝐶)) ↔ (𝐴 ∈ ω → (𝐺𝐴) ∈ (ℤ𝐶))))
7 fveq2 5256 . . . . . 6 (𝑦 = ∅ → (𝐺𝑦) = (𝐺‘∅))
87eleq1d 2153 . . . . 5 (𝑦 = ∅ → ((𝐺𝑦) ∈ (ℤ𝐶) ↔ (𝐺‘∅) ∈ (ℤ𝐶)))
9 fveq2 5256 . . . . . 6 (𝑦 = 𝑧 → (𝐺𝑦) = (𝐺𝑧))
109eleq1d 2153 . . . . 5 (𝑦 = 𝑧 → ((𝐺𝑦) ∈ (ℤ𝐶) ↔ (𝐺𝑧) ∈ (ℤ𝐶)))
11 fveq2 5256 . . . . . 6 (𝑦 = suc 𝑧 → (𝐺𝑦) = (𝐺‘suc 𝑧))
1211eleq1d 2153 . . . . 5 (𝑦 = suc 𝑧 → ((𝐺𝑦) ∈ (ℤ𝐶) ↔ (𝐺‘suc 𝑧) ∈ (ℤ𝐶)))
13 frec2uz.1 . . . . . . 7 (𝜑𝐶 ∈ ℤ)
14 frec2uz.2 . . . . . . 7 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
1513, 14frec2uz0d 9709 . . . . . 6 (𝜑 → (𝐺‘∅) = 𝐶)
16 uzid 8942 . . . . . . 7 (𝐶 ∈ ℤ → 𝐶 ∈ (ℤ𝐶))
1713, 16syl 14 . . . . . 6 (𝜑𝐶 ∈ (ℤ𝐶))
1815, 17eqeltrd 2161 . . . . 5 (𝜑 → (𝐺‘∅) ∈ (ℤ𝐶))
19 peano2uz 8980 . . . . . . 7 ((𝐺𝑧) ∈ (ℤ𝐶) → ((𝐺𝑧) + 1) ∈ (ℤ𝐶))
2013adantl 271 . . . . . . . . 9 ((𝑧 ∈ ω ∧ 𝜑) → 𝐶 ∈ ℤ)
21 simpl 107 . . . . . . . . 9 ((𝑧 ∈ ω ∧ 𝜑) → 𝑧 ∈ ω)
2220, 14, 21frec2uzsucd 9711 . . . . . . . 8 ((𝑧 ∈ ω ∧ 𝜑) → (𝐺‘suc 𝑧) = ((𝐺𝑧) + 1))
2322eleq1d 2153 . . . . . . 7 ((𝑧 ∈ ω ∧ 𝜑) → ((𝐺‘suc 𝑧) ∈ (ℤ𝐶) ↔ ((𝐺𝑧) + 1) ∈ (ℤ𝐶)))
2419, 23syl5ibr 154 . . . . . 6 ((𝑧 ∈ ω ∧ 𝜑) → ((𝐺𝑧) ∈ (ℤ𝐶) → (𝐺‘suc 𝑧) ∈ (ℤ𝐶)))
2524ex 113 . . . . 5 (𝑧 ∈ ω → (𝜑 → ((𝐺𝑧) ∈ (ℤ𝐶) → (𝐺‘suc 𝑧) ∈ (ℤ𝐶))))
268, 10, 12, 18, 25finds2 4382 . . . 4 (𝑦 ∈ ω → (𝜑 → (𝐺𝑦) ∈ (ℤ𝐶)))
2726com12 30 . . 3 (𝜑 → (𝑦 ∈ ω → (𝐺𝑦) ∈ (ℤ𝐶)))
281, 6, 27vtocld 2664 . 2 (𝜑 → (𝐴 ∈ ω → (𝐺𝐴) ∈ (ℤ𝐶)))
291, 28mpd 13 1 (𝜑 → (𝐺𝐴) ∈ (ℤ𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1287  wcel 1436  c0 3272  cmpt 3868  suc csuc 4159  ωcom 4371  cfv 4972  (class class class)co 5594  freccfrec 6090  1c1 7272   + caddc 7274  cz 8660  cuz 8928
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3922  ax-sep 3925  ax-nul 3933  ax-pow 3977  ax-pr 4003  ax-un 4227  ax-setind 4319  ax-iinf 4369  ax-cnex 7357  ax-resscn 7358  ax-1cn 7359  ax-1re 7360  ax-icn 7361  ax-addcl 7362  ax-addrcl 7363  ax-mulcl 7364  ax-addcom 7366  ax-addass 7368  ax-distr 7370  ax-i2m1 7371  ax-0lt1 7372  ax-0id 7374  ax-rnegex 7375  ax-cnre 7377  ax-pre-ltirr 7378  ax-pre-ltwlin 7379  ax-pre-lttrn 7380  ax-pre-ltadd 7382
This theorem depends on definitions:  df-bi 115  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2616  df-sbc 2829  df-csb 2922  df-dif 2988  df-un 2990  df-in 2992  df-ss 2999  df-nul 3273  df-pw 3411  df-sn 3431  df-pr 3432  df-op 3434  df-uni 3631  df-int 3666  df-iun 3709  df-br 3815  df-opab 3869  df-mpt 3870  df-tr 3905  df-id 4087  df-iord 4160  df-on 4162  df-ilim 4163  df-suc 4165  df-iom 4372  df-xp 4410  df-rel 4411  df-cnv 4412  df-co 4413  df-dm 4414  df-rn 4415  df-res 4416  df-ima 4417  df-iota 4937  df-fun 4974  df-fn 4975  df-f 4976  df-f1 4977  df-fo 4978  df-f1o 4979  df-fv 4980  df-riota 5550  df-ov 5597  df-oprab 5598  df-mpt2 5599  df-recs 6005  df-frec 6091  df-pnf 7445  df-mnf 7446  df-xr 7447  df-ltxr 7448  df-le 7449  df-sub 7576  df-neg 7577  df-inn 8335  df-n0 8584  df-z 8661  df-uz 8929
This theorem is referenced by:  frec2uzltd  9713  frec2uzrand  9715  frec2uzrdg  9719  frecuzrdgsuc  9724  hashcl  10038
  Copyright terms: Public domain W3C validator