| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frec2uzuzd | GIF version | ||
| Description: The value 𝐺 (see frec2uz0d 10508) at an ordinal natural number is in the upper integers. (Contributed by Jim Kingdon, 16-May-2020.) |
| Ref | Expression |
|---|---|
| frec2uz.1 | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
| frec2uz.2 | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
| frec2uzzd.a | ⊢ (𝜑 → 𝐴 ∈ ω) |
| Ref | Expression |
|---|---|
| frec2uzuzd | ⊢ (𝜑 → (𝐺‘𝐴) ∈ (ℤ≥‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frec2uzzd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ω) | |
| 2 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴) | |
| 3 | 2 | eleq1d 2265 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → (𝑦 ∈ ω ↔ 𝐴 ∈ ω)) |
| 4 | 2 | fveq2d 5565 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → (𝐺‘𝑦) = (𝐺‘𝐴)) |
| 5 | 4 | eleq1d 2265 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → ((𝐺‘𝑦) ∈ (ℤ≥‘𝐶) ↔ (𝐺‘𝐴) ∈ (ℤ≥‘𝐶))) |
| 6 | 3, 5 | imbi12d 234 | . . 3 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → ((𝑦 ∈ ω → (𝐺‘𝑦) ∈ (ℤ≥‘𝐶)) ↔ (𝐴 ∈ ω → (𝐺‘𝐴) ∈ (ℤ≥‘𝐶)))) |
| 7 | fveq2 5561 | . . . . . 6 ⊢ (𝑦 = ∅ → (𝐺‘𝑦) = (𝐺‘∅)) | |
| 8 | 7 | eleq1d 2265 | . . . . 5 ⊢ (𝑦 = ∅ → ((𝐺‘𝑦) ∈ (ℤ≥‘𝐶) ↔ (𝐺‘∅) ∈ (ℤ≥‘𝐶))) |
| 9 | fveq2 5561 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝐺‘𝑦) = (𝐺‘𝑧)) | |
| 10 | 9 | eleq1d 2265 | . . . . 5 ⊢ (𝑦 = 𝑧 → ((𝐺‘𝑦) ∈ (ℤ≥‘𝐶) ↔ (𝐺‘𝑧) ∈ (ℤ≥‘𝐶))) |
| 11 | fveq2 5561 | . . . . . 6 ⊢ (𝑦 = suc 𝑧 → (𝐺‘𝑦) = (𝐺‘suc 𝑧)) | |
| 12 | 11 | eleq1d 2265 | . . . . 5 ⊢ (𝑦 = suc 𝑧 → ((𝐺‘𝑦) ∈ (ℤ≥‘𝐶) ↔ (𝐺‘suc 𝑧) ∈ (ℤ≥‘𝐶))) |
| 13 | frec2uz.1 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
| 14 | frec2uz.2 | . . . . . . 7 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) | |
| 15 | 13, 14 | frec2uz0d 10508 | . . . . . 6 ⊢ (𝜑 → (𝐺‘∅) = 𝐶) |
| 16 | uzid 9632 | . . . . . . 7 ⊢ (𝐶 ∈ ℤ → 𝐶 ∈ (ℤ≥‘𝐶)) | |
| 17 | 13, 16 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ (ℤ≥‘𝐶)) |
| 18 | 15, 17 | eqeltrd 2273 | . . . . 5 ⊢ (𝜑 → (𝐺‘∅) ∈ (ℤ≥‘𝐶)) |
| 19 | peano2uz 9674 | . . . . . . 7 ⊢ ((𝐺‘𝑧) ∈ (ℤ≥‘𝐶) → ((𝐺‘𝑧) + 1) ∈ (ℤ≥‘𝐶)) | |
| 20 | 13 | adantl 277 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ω ∧ 𝜑) → 𝐶 ∈ ℤ) |
| 21 | simpl 109 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ω ∧ 𝜑) → 𝑧 ∈ ω) | |
| 22 | 20, 14, 21 | frec2uzsucd 10510 | . . . . . . . 8 ⊢ ((𝑧 ∈ ω ∧ 𝜑) → (𝐺‘suc 𝑧) = ((𝐺‘𝑧) + 1)) |
| 23 | 22 | eleq1d 2265 | . . . . . . 7 ⊢ ((𝑧 ∈ ω ∧ 𝜑) → ((𝐺‘suc 𝑧) ∈ (ℤ≥‘𝐶) ↔ ((𝐺‘𝑧) + 1) ∈ (ℤ≥‘𝐶))) |
| 24 | 19, 23 | imbitrrid 156 | . . . . . 6 ⊢ ((𝑧 ∈ ω ∧ 𝜑) → ((𝐺‘𝑧) ∈ (ℤ≥‘𝐶) → (𝐺‘suc 𝑧) ∈ (ℤ≥‘𝐶))) |
| 25 | 24 | ex 115 | . . . . 5 ⊢ (𝑧 ∈ ω → (𝜑 → ((𝐺‘𝑧) ∈ (ℤ≥‘𝐶) → (𝐺‘suc 𝑧) ∈ (ℤ≥‘𝐶)))) |
| 26 | 8, 10, 12, 18, 25 | finds2 4638 | . . . 4 ⊢ (𝑦 ∈ ω → (𝜑 → (𝐺‘𝑦) ∈ (ℤ≥‘𝐶))) |
| 27 | 26 | com12 30 | . . 3 ⊢ (𝜑 → (𝑦 ∈ ω → (𝐺‘𝑦) ∈ (ℤ≥‘𝐶))) |
| 28 | 1, 6, 27 | vtocld 2816 | . 2 ⊢ (𝜑 → (𝐴 ∈ ω → (𝐺‘𝐴) ∈ (ℤ≥‘𝐶))) |
| 29 | 1, 28 | mpd 13 | 1 ⊢ (𝜑 → (𝐺‘𝐴) ∈ (ℤ≥‘𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∅c0 3451 ↦ cmpt 4095 suc csuc 4401 ωcom 4627 ‘cfv 5259 (class class class)co 5925 freccfrec 6457 1c1 7897 + caddc 7899 ℤcz 9343 ℤ≥cuz 9618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-recs 6372 df-frec 6458 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 df-uz 9619 |
| This theorem is referenced by: frec2uzltd 10512 frec2uzrand 10514 frec2uzrdg 10518 frecuzrdgsuc 10523 hashcl 10890 nninfctlemfo 12232 ennnfonelemrn 12661 |
| Copyright terms: Public domain | W3C validator |