![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > frec2uzuzd | GIF version |
Description: The value 𝐺 (see frec2uz0d 10470) at an ordinal natural number is in the upper integers. (Contributed by Jim Kingdon, 16-May-2020.) |
Ref | Expression |
---|---|
frec2uz.1 | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
frec2uz.2 | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
frec2uzzd.a | ⊢ (𝜑 → 𝐴 ∈ ω) |
Ref | Expression |
---|---|
frec2uzuzd | ⊢ (𝜑 → (𝐺‘𝐴) ∈ (ℤ≥‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frec2uzzd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ω) | |
2 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴) | |
3 | 2 | eleq1d 2262 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → (𝑦 ∈ ω ↔ 𝐴 ∈ ω)) |
4 | 2 | fveq2d 5558 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → (𝐺‘𝑦) = (𝐺‘𝐴)) |
5 | 4 | eleq1d 2262 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → ((𝐺‘𝑦) ∈ (ℤ≥‘𝐶) ↔ (𝐺‘𝐴) ∈ (ℤ≥‘𝐶))) |
6 | 3, 5 | imbi12d 234 | . . 3 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → ((𝑦 ∈ ω → (𝐺‘𝑦) ∈ (ℤ≥‘𝐶)) ↔ (𝐴 ∈ ω → (𝐺‘𝐴) ∈ (ℤ≥‘𝐶)))) |
7 | fveq2 5554 | . . . . . 6 ⊢ (𝑦 = ∅ → (𝐺‘𝑦) = (𝐺‘∅)) | |
8 | 7 | eleq1d 2262 | . . . . 5 ⊢ (𝑦 = ∅ → ((𝐺‘𝑦) ∈ (ℤ≥‘𝐶) ↔ (𝐺‘∅) ∈ (ℤ≥‘𝐶))) |
9 | fveq2 5554 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝐺‘𝑦) = (𝐺‘𝑧)) | |
10 | 9 | eleq1d 2262 | . . . . 5 ⊢ (𝑦 = 𝑧 → ((𝐺‘𝑦) ∈ (ℤ≥‘𝐶) ↔ (𝐺‘𝑧) ∈ (ℤ≥‘𝐶))) |
11 | fveq2 5554 | . . . . . 6 ⊢ (𝑦 = suc 𝑧 → (𝐺‘𝑦) = (𝐺‘suc 𝑧)) | |
12 | 11 | eleq1d 2262 | . . . . 5 ⊢ (𝑦 = suc 𝑧 → ((𝐺‘𝑦) ∈ (ℤ≥‘𝐶) ↔ (𝐺‘suc 𝑧) ∈ (ℤ≥‘𝐶))) |
13 | frec2uz.1 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
14 | frec2uz.2 | . . . . . . 7 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) | |
15 | 13, 14 | frec2uz0d 10470 | . . . . . 6 ⊢ (𝜑 → (𝐺‘∅) = 𝐶) |
16 | uzid 9606 | . . . . . . 7 ⊢ (𝐶 ∈ ℤ → 𝐶 ∈ (ℤ≥‘𝐶)) | |
17 | 13, 16 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ (ℤ≥‘𝐶)) |
18 | 15, 17 | eqeltrd 2270 | . . . . 5 ⊢ (𝜑 → (𝐺‘∅) ∈ (ℤ≥‘𝐶)) |
19 | peano2uz 9648 | . . . . . . 7 ⊢ ((𝐺‘𝑧) ∈ (ℤ≥‘𝐶) → ((𝐺‘𝑧) + 1) ∈ (ℤ≥‘𝐶)) | |
20 | 13 | adantl 277 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ω ∧ 𝜑) → 𝐶 ∈ ℤ) |
21 | simpl 109 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ω ∧ 𝜑) → 𝑧 ∈ ω) | |
22 | 20, 14, 21 | frec2uzsucd 10472 | . . . . . . . 8 ⊢ ((𝑧 ∈ ω ∧ 𝜑) → (𝐺‘suc 𝑧) = ((𝐺‘𝑧) + 1)) |
23 | 22 | eleq1d 2262 | . . . . . . 7 ⊢ ((𝑧 ∈ ω ∧ 𝜑) → ((𝐺‘suc 𝑧) ∈ (ℤ≥‘𝐶) ↔ ((𝐺‘𝑧) + 1) ∈ (ℤ≥‘𝐶))) |
24 | 19, 23 | imbitrrid 156 | . . . . . 6 ⊢ ((𝑧 ∈ ω ∧ 𝜑) → ((𝐺‘𝑧) ∈ (ℤ≥‘𝐶) → (𝐺‘suc 𝑧) ∈ (ℤ≥‘𝐶))) |
25 | 24 | ex 115 | . . . . 5 ⊢ (𝑧 ∈ ω → (𝜑 → ((𝐺‘𝑧) ∈ (ℤ≥‘𝐶) → (𝐺‘suc 𝑧) ∈ (ℤ≥‘𝐶)))) |
26 | 8, 10, 12, 18, 25 | finds2 4633 | . . . 4 ⊢ (𝑦 ∈ ω → (𝜑 → (𝐺‘𝑦) ∈ (ℤ≥‘𝐶))) |
27 | 26 | com12 30 | . . 3 ⊢ (𝜑 → (𝑦 ∈ ω → (𝐺‘𝑦) ∈ (ℤ≥‘𝐶))) |
28 | 1, 6, 27 | vtocld 2812 | . 2 ⊢ (𝜑 → (𝐴 ∈ ω → (𝐺‘𝐴) ∈ (ℤ≥‘𝐶))) |
29 | 1, 28 | mpd 13 | 1 ⊢ (𝜑 → (𝐺‘𝐴) ∈ (ℤ≥‘𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∅c0 3446 ↦ cmpt 4090 suc csuc 4396 ωcom 4622 ‘cfv 5254 (class class class)co 5918 freccfrec 6443 1c1 7873 + caddc 7875 ℤcz 9317 ℤ≥cuz 9592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-recs 6358 df-frec 6444 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-z 9318 df-uz 9593 |
This theorem is referenced by: frec2uzltd 10474 frec2uzrand 10476 frec2uzrdg 10480 frecuzrdgsuc 10485 hashcl 10852 nninfctlemfo 12177 ennnfonelemrn 12576 |
Copyright terms: Public domain | W3C validator |