![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > frec2uzuzd | GIF version |
Description: The value 𝐺 (see frec2uz0d 10065) at an ordinal natural number is in the upper integers. (Contributed by Jim Kingdon, 16-May-2020.) |
Ref | Expression |
---|---|
frec2uz.1 | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
frec2uz.2 | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
frec2uzzd.a | ⊢ (𝜑 → 𝐴 ∈ ω) |
Ref | Expression |
---|---|
frec2uzuzd | ⊢ (𝜑 → (𝐺‘𝐴) ∈ (ℤ≥‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frec2uzzd.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ω) | |
2 | simpr 109 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → 𝑦 = 𝐴) | |
3 | 2 | eleq1d 2183 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → (𝑦 ∈ ω ↔ 𝐴 ∈ ω)) |
4 | 2 | fveq2d 5379 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → (𝐺‘𝑦) = (𝐺‘𝐴)) |
5 | 4 | eleq1d 2183 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → ((𝐺‘𝑦) ∈ (ℤ≥‘𝐶) ↔ (𝐺‘𝐴) ∈ (ℤ≥‘𝐶))) |
6 | 3, 5 | imbi12d 233 | . . 3 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → ((𝑦 ∈ ω → (𝐺‘𝑦) ∈ (ℤ≥‘𝐶)) ↔ (𝐴 ∈ ω → (𝐺‘𝐴) ∈ (ℤ≥‘𝐶)))) |
7 | fveq2 5375 | . . . . . 6 ⊢ (𝑦 = ∅ → (𝐺‘𝑦) = (𝐺‘∅)) | |
8 | 7 | eleq1d 2183 | . . . . 5 ⊢ (𝑦 = ∅ → ((𝐺‘𝑦) ∈ (ℤ≥‘𝐶) ↔ (𝐺‘∅) ∈ (ℤ≥‘𝐶))) |
9 | fveq2 5375 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝐺‘𝑦) = (𝐺‘𝑧)) | |
10 | 9 | eleq1d 2183 | . . . . 5 ⊢ (𝑦 = 𝑧 → ((𝐺‘𝑦) ∈ (ℤ≥‘𝐶) ↔ (𝐺‘𝑧) ∈ (ℤ≥‘𝐶))) |
11 | fveq2 5375 | . . . . . 6 ⊢ (𝑦 = suc 𝑧 → (𝐺‘𝑦) = (𝐺‘suc 𝑧)) | |
12 | 11 | eleq1d 2183 | . . . . 5 ⊢ (𝑦 = suc 𝑧 → ((𝐺‘𝑦) ∈ (ℤ≥‘𝐶) ↔ (𝐺‘suc 𝑧) ∈ (ℤ≥‘𝐶))) |
13 | frec2uz.1 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
14 | frec2uz.2 | . . . . . . 7 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) | |
15 | 13, 14 | frec2uz0d 10065 | . . . . . 6 ⊢ (𝜑 → (𝐺‘∅) = 𝐶) |
16 | uzid 9242 | . . . . . . 7 ⊢ (𝐶 ∈ ℤ → 𝐶 ∈ (ℤ≥‘𝐶)) | |
17 | 13, 16 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ (ℤ≥‘𝐶)) |
18 | 15, 17 | eqeltrd 2191 | . . . . 5 ⊢ (𝜑 → (𝐺‘∅) ∈ (ℤ≥‘𝐶)) |
19 | peano2uz 9280 | . . . . . . 7 ⊢ ((𝐺‘𝑧) ∈ (ℤ≥‘𝐶) → ((𝐺‘𝑧) + 1) ∈ (ℤ≥‘𝐶)) | |
20 | 13 | adantl 273 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ω ∧ 𝜑) → 𝐶 ∈ ℤ) |
21 | simpl 108 | . . . . . . . . 9 ⊢ ((𝑧 ∈ ω ∧ 𝜑) → 𝑧 ∈ ω) | |
22 | 20, 14, 21 | frec2uzsucd 10067 | . . . . . . . 8 ⊢ ((𝑧 ∈ ω ∧ 𝜑) → (𝐺‘suc 𝑧) = ((𝐺‘𝑧) + 1)) |
23 | 22 | eleq1d 2183 | . . . . . . 7 ⊢ ((𝑧 ∈ ω ∧ 𝜑) → ((𝐺‘suc 𝑧) ∈ (ℤ≥‘𝐶) ↔ ((𝐺‘𝑧) + 1) ∈ (ℤ≥‘𝐶))) |
24 | 19, 23 | syl5ibr 155 | . . . . . 6 ⊢ ((𝑧 ∈ ω ∧ 𝜑) → ((𝐺‘𝑧) ∈ (ℤ≥‘𝐶) → (𝐺‘suc 𝑧) ∈ (ℤ≥‘𝐶))) |
25 | 24 | ex 114 | . . . . 5 ⊢ (𝑧 ∈ ω → (𝜑 → ((𝐺‘𝑧) ∈ (ℤ≥‘𝐶) → (𝐺‘suc 𝑧) ∈ (ℤ≥‘𝐶)))) |
26 | 8, 10, 12, 18, 25 | finds2 4475 | . . . 4 ⊢ (𝑦 ∈ ω → (𝜑 → (𝐺‘𝑦) ∈ (ℤ≥‘𝐶))) |
27 | 26 | com12 30 | . . 3 ⊢ (𝜑 → (𝑦 ∈ ω → (𝐺‘𝑦) ∈ (ℤ≥‘𝐶))) |
28 | 1, 6, 27 | vtocld 2709 | . 2 ⊢ (𝜑 → (𝐴 ∈ ω → (𝐺‘𝐴) ∈ (ℤ≥‘𝐶))) |
29 | 1, 28 | mpd 13 | 1 ⊢ (𝜑 → (𝐺‘𝐴) ∈ (ℤ≥‘𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1314 ∈ wcel 1463 ∅c0 3329 ↦ cmpt 3949 suc csuc 4247 ωcom 4464 ‘cfv 5081 (class class class)co 5728 freccfrec 6241 1c1 7548 + caddc 7550 ℤcz 8958 ℤ≥cuz 9228 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-coll 4003 ax-sep 4006 ax-nul 4014 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-iinf 4462 ax-cnex 7636 ax-resscn 7637 ax-1cn 7638 ax-1re 7639 ax-icn 7640 ax-addcl 7641 ax-addrcl 7642 ax-mulcl 7643 ax-addcom 7645 ax-addass 7647 ax-distr 7649 ax-i2m1 7650 ax-0lt1 7651 ax-0id 7653 ax-rnegex 7654 ax-cnre 7656 ax-pre-ltirr 7657 ax-pre-ltwlin 7658 ax-pre-lttrn 7659 ax-pre-ltadd 7661 |
This theorem depends on definitions: df-bi 116 df-3or 946 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-nel 2378 df-ral 2395 df-rex 2396 df-reu 2397 df-rab 2399 df-v 2659 df-sbc 2879 df-csb 2972 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-nul 3330 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-int 3738 df-iun 3781 df-br 3896 df-opab 3950 df-mpt 3951 df-tr 3987 df-id 4175 df-iord 4248 df-on 4250 df-ilim 4251 df-suc 4253 df-iom 4465 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-f1 5086 df-fo 5087 df-f1o 5088 df-fv 5089 df-riota 5684 df-ov 5731 df-oprab 5732 df-mpo 5733 df-recs 6156 df-frec 6242 df-pnf 7726 df-mnf 7727 df-xr 7728 df-ltxr 7729 df-le 7730 df-sub 7858 df-neg 7859 df-inn 8631 df-n0 8882 df-z 8959 df-uz 9229 |
This theorem is referenced by: frec2uzltd 10069 frec2uzrand 10071 frec2uzrdg 10075 frecuzrdgsuc 10080 hashcl 10420 ennnfonelemrn 11777 |
Copyright terms: Public domain | W3C validator |