ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeliunxp2f GIF version

Theorem opeliunxp2f 6296
Description: Membership in a union of Cartesian products, using bound-variable hypothesis for 𝐸 instead of distinct variable conditions as in opeliunxp2 4806. (Contributed by AV, 25-Oct-2020.)
Hypotheses
Ref Expression
opeliunxp2f.f 𝑥𝐸
opeliunxp2f.e (𝑥 = 𝐶𝐵 = 𝐸)
Assertion
Ref Expression
opeliunxp2f (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐸(𝑥)

Proof of Theorem opeliunxp2f
StepHypRef Expression
1 df-br 4034 . . 3 (𝐶 𝑥𝐴 ({𝑥} × 𝐵)𝐷 ↔ ⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵))
2 relxp 4772 . . . . . 6 Rel ({𝑥} × 𝐵)
32rgenw 2552 . . . . 5 𝑥𝐴 Rel ({𝑥} × 𝐵)
4 reliun 4784 . . . . 5 (Rel 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∀𝑥𝐴 Rel ({𝑥} × 𝐵))
53, 4mpbir 146 . . . 4 Rel 𝑥𝐴 ({𝑥} × 𝐵)
65brrelex1i 4706 . . 3 (𝐶 𝑥𝐴 ({𝑥} × 𝐵)𝐷𝐶 ∈ V)
71, 6sylbir 135 . 2 (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) → 𝐶 ∈ V)
8 elex 2774 . . 3 (𝐶𝐴𝐶 ∈ V)
98adantr 276 . 2 ((𝐶𝐴𝐷𝐸) → 𝐶 ∈ V)
10 nfiu1 3946 . . . . 5 𝑥 𝑥𝐴 ({𝑥} × 𝐵)
1110nfel2 2352 . . . 4 𝑥𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)
12 nfv 1542 . . . . 5 𝑥 𝐶𝐴
13 opeliunxp2f.f . . . . . 6 𝑥𝐸
1413nfel2 2352 . . . . 5 𝑥 𝐷𝐸
1512, 14nfan 1579 . . . 4 𝑥(𝐶𝐴𝐷𝐸)
1611, 15nfbi 1603 . . 3 𝑥(⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))
17 opeq1 3808 . . . . 5 (𝑥 = 𝐶 → ⟨𝑥, 𝐷⟩ = ⟨𝐶, 𝐷⟩)
1817eleq1d 2265 . . . 4 (𝑥 = 𝐶 → (⟨𝑥, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ ⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)))
19 eleq1 2259 . . . . 5 (𝑥 = 𝐶 → (𝑥𝐴𝐶𝐴))
20 opeliunxp2f.e . . . . . 6 (𝑥 = 𝐶𝐵 = 𝐸)
2120eleq2d 2266 . . . . 5 (𝑥 = 𝐶 → (𝐷𝐵𝐷𝐸))
2219, 21anbi12d 473 . . . 4 (𝑥 = 𝐶 → ((𝑥𝐴𝐷𝐵) ↔ (𝐶𝐴𝐷𝐸)))
2318, 22bibi12d 235 . . 3 (𝑥 = 𝐶 → ((⟨𝑥, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐷𝐵)) ↔ (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))))
24 opeliunxp 4718 . . 3 (⟨𝑥, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐷𝐵))
2516, 23, 24vtoclg1f 2823 . 2 (𝐶 ∈ V → (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸)))
267, 9, 25pm5.21nii 705 1 (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wnfc 2326  wral 2475  Vcvv 2763  {csn 3622  cop 3625   ciun 3916   class class class wbr 4033   × cxp 4661  Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-iun 3918  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670
This theorem is referenced by:  fisumcom2  11603  fprodcom2fi  11791
  Copyright terms: Public domain W3C validator