ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeliunxp2f GIF version

Theorem opeliunxp2f 6233
Description: Membership in a union of Cartesian products, using bound-variable hypothesis for 𝐸 instead of distinct variable conditions as in opeliunxp2 4763. (Contributed by AV, 25-Oct-2020.)
Hypotheses
Ref Expression
opeliunxp2f.f 𝑥𝐸
opeliunxp2f.e (𝑥 = 𝐶𝐵 = 𝐸)
Assertion
Ref Expression
opeliunxp2f (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐸(𝑥)

Proof of Theorem opeliunxp2f
StepHypRef Expression
1 df-br 4001 . . 3 (𝐶 𝑥𝐴 ({𝑥} × 𝐵)𝐷 ↔ ⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵))
2 relxp 4732 . . . . . 6 Rel ({𝑥} × 𝐵)
32rgenw 2532 . . . . 5 𝑥𝐴 Rel ({𝑥} × 𝐵)
4 reliun 4744 . . . . 5 (Rel 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∀𝑥𝐴 Rel ({𝑥} × 𝐵))
53, 4mpbir 146 . . . 4 Rel 𝑥𝐴 ({𝑥} × 𝐵)
65brrelex1i 4666 . . 3 (𝐶 𝑥𝐴 ({𝑥} × 𝐵)𝐷𝐶 ∈ V)
71, 6sylbir 135 . 2 (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) → 𝐶 ∈ V)
8 elex 2748 . . 3 (𝐶𝐴𝐶 ∈ V)
98adantr 276 . 2 ((𝐶𝐴𝐷𝐸) → 𝐶 ∈ V)
10 nfiu1 3914 . . . . 5 𝑥 𝑥𝐴 ({𝑥} × 𝐵)
1110nfel2 2332 . . . 4 𝑥𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)
12 nfv 1528 . . . . 5 𝑥 𝐶𝐴
13 opeliunxp2f.f . . . . . 6 𝑥𝐸
1413nfel2 2332 . . . . 5 𝑥 𝐷𝐸
1512, 14nfan 1565 . . . 4 𝑥(𝐶𝐴𝐷𝐸)
1611, 15nfbi 1589 . . 3 𝑥(⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))
17 opeq1 3776 . . . . 5 (𝑥 = 𝐶 → ⟨𝑥, 𝐷⟩ = ⟨𝐶, 𝐷⟩)
1817eleq1d 2246 . . . 4 (𝑥 = 𝐶 → (⟨𝑥, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ ⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)))
19 eleq1 2240 . . . . 5 (𝑥 = 𝐶 → (𝑥𝐴𝐶𝐴))
20 opeliunxp2f.e . . . . . 6 (𝑥 = 𝐶𝐵 = 𝐸)
2120eleq2d 2247 . . . . 5 (𝑥 = 𝐶 → (𝐷𝐵𝐷𝐸))
2219, 21anbi12d 473 . . . 4 (𝑥 = 𝐶 → ((𝑥𝐴𝐷𝐵) ↔ (𝐶𝐴𝐷𝐸)))
2318, 22bibi12d 235 . . 3 (𝑥 = 𝐶 → ((⟨𝑥, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐷𝐵)) ↔ (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))))
24 opeliunxp 4678 . . 3 (⟨𝑥, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐷𝐵))
2516, 23, 24vtoclg1f 2796 . 2 (𝐶 ∈ V → (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸)))
267, 9, 25pm5.21nii 704 1 (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wnfc 2306  wral 2455  Vcvv 2737  {csn 3591  cop 3594   ciun 3884   class class class wbr 4000   × cxp 4621  Rel wrel 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-csb 3058  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-iun 3886  df-br 4001  df-opab 4062  df-xp 4629  df-rel 4630
This theorem is referenced by:  fisumcom2  11430  fprodcom2fi  11618
  Copyright terms: Public domain W3C validator