Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmin | Structured version Visualization version GIF version |
Description: The domain of an intersection is included in the intersection of the domains. Theorem 6 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.) |
Ref | Expression |
---|---|
dmin | ⊢ dom (𝐴 ∩ 𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.40 1888 | . . 3 ⊢ (∃𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵) → (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵)) | |
2 | vex 3445 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | 2 | eldm2 5843 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 ∩ 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ∩ 𝐵)) |
4 | elin 3914 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∩ 𝐵) ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
5 | 4 | exbii 1849 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ∩ 𝐵) ↔ ∃𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
6 | 3, 5 | bitri 274 | . . 3 ⊢ (𝑥 ∈ dom (𝐴 ∩ 𝐵) ↔ ∃𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
7 | elin 3914 | . . . 4 ⊢ (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↔ (𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ dom 𝐵)) | |
8 | 2 | eldm2 5843 | . . . . 5 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
9 | 2 | eldm2 5843 | . . . . 5 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵) |
10 | 8, 9 | anbi12i 627 | . . . 4 ⊢ ((𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ dom 𝐵) ↔ (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵)) |
11 | 7, 10 | bitri 274 | . . 3 ⊢ (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↔ (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵)) |
12 | 1, 6, 11 | 3imtr4i 291 | . 2 ⊢ (𝑥 ∈ dom (𝐴 ∩ 𝐵) → 𝑥 ∈ (dom 𝐴 ∩ dom 𝐵)) |
13 | 12 | ssriv 3936 | 1 ⊢ dom (𝐴 ∩ 𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∃wex 1780 ∈ wcel 2105 ∩ cin 3897 ⊆ wss 3898 〈cop 4579 dom cdm 5620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-br 5093 df-dm 5630 |
This theorem is referenced by: rnin 6085 psssdm2 18396 hauseqcn 32146 |
Copyright terms: Public domain | W3C validator |