![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmin | Structured version Visualization version GIF version |
Description: The domain of an intersection is included in the intersection of the domains. Theorem 6 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.) |
Ref | Expression |
---|---|
dmin | ⊢ dom (𝐴 ∩ 𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.40 1889 | . . 3 ⊢ (∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) → (∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐵)) | |
2 | vex 3478 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | 2 | eldm2 5899 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 ∩ 𝐵) ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ (𝐴 ∩ 𝐵)) |
4 | elin 3963 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∩ 𝐵) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) | |
5 | 4 | exbii 1850 | . . . 4 ⊢ (∃𝑦⟨𝑥, 𝑦⟩ ∈ (𝐴 ∩ 𝐵) ↔ ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
6 | 3, 5 | bitri 274 | . . 3 ⊢ (𝑥 ∈ dom (𝐴 ∩ 𝐵) ↔ ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
7 | elin 3963 | . . . 4 ⊢ (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↔ (𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ dom 𝐵)) | |
8 | 2 | eldm2 5899 | . . . . 5 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴) |
9 | 2 | eldm2 5899 | . . . . 5 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐵) |
10 | 8, 9 | anbi12i 627 | . . . 4 ⊢ ((𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ dom 𝐵) ↔ (∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
11 | 7, 10 | bitri 274 | . . 3 ⊢ (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↔ (∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
12 | 1, 6, 11 | 3imtr4i 291 | . 2 ⊢ (𝑥 ∈ dom (𝐴 ∩ 𝐵) → 𝑥 ∈ (dom 𝐴 ∩ dom 𝐵)) |
13 | 12 | ssriv 3985 | 1 ⊢ dom (𝐴 ∩ 𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∃wex 1781 ∈ wcel 2106 ∩ cin 3946 ⊆ wss 3947 ⟨cop 4633 dom cdm 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-dm 5685 |
This theorem is referenced by: rnin 6143 psssdm2 18530 hauseqcn 32866 |
Copyright terms: Public domain | W3C validator |