MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmin Structured version   Visualization version   GIF version

Theorem dmin 5868
Description: The domain of an intersection is included in the intersection of the domains. Theorem 6 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
dmin dom (𝐴𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵)

Proof of Theorem dmin
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.40 1890 . . 3 (∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) → (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐵))
2 vex 3448 . . . . 5 𝑥 ∈ V
32eldm2 5858 . . . 4 (𝑥 ∈ dom (𝐴𝐵) ↔ ∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵))
4 elin 3927 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
54exbii 1851 . . . 4 (∃𝑦𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
63, 5bitri 275 . . 3 (𝑥 ∈ dom (𝐴𝐵) ↔ ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵))
7 elin 3927 . . . 4 (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↔ (𝑥 ∈ dom 𝐴𝑥 ∈ dom 𝐵))
82eldm2 5858 . . . . 5 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
92eldm2 5858 . . . . 5 (𝑥 ∈ dom 𝐵 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐵)
108, 9anbi12i 628 . . . 4 ((𝑥 ∈ dom 𝐴𝑥 ∈ dom 𝐵) ↔ (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐵))
117, 10bitri 275 . . 3 (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↔ (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐵))
121, 6, 113imtr4i 292 . 2 (𝑥 ∈ dom (𝐴𝐵) → 𝑥 ∈ (dom 𝐴 ∩ dom 𝐵))
1312ssriv 3949 1 dom (𝐴𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 397  wex 1782  wcel 2107  cin 3910  wss 3911  cop 4593  dom cdm 5634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-br 5107  df-dm 5644
This theorem is referenced by:  rnin  6100  psssdm2  18475  hauseqcn  32536
  Copyright terms: Public domain W3C validator