![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmin | Structured version Visualization version GIF version |
Description: The domain of an intersection is included in the intersection of the domains. Theorem 6 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.) |
Ref | Expression |
---|---|
dmin | ⊢ dom (𝐴 ∩ 𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.40 1885 | . . 3 ⊢ (∃𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵) → (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵)) | |
2 | vex 3492 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | 2 | eldm2 5926 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 ∩ 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ∩ 𝐵)) |
4 | elin 3992 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∩ 𝐵) ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
5 | 4 | exbii 1846 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ∩ 𝐵) ↔ ∃𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
6 | 3, 5 | bitri 275 | . . 3 ⊢ (𝑥 ∈ dom (𝐴 ∩ 𝐵) ↔ ∃𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
7 | elin 3992 | . . . 4 ⊢ (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↔ (𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ dom 𝐵)) | |
8 | 2 | eldm2 5926 | . . . . 5 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
9 | 2 | eldm2 5926 | . . . . 5 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵) |
10 | 8, 9 | anbi12i 627 | . . . 4 ⊢ ((𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ dom 𝐵) ↔ (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵)) |
11 | 7, 10 | bitri 275 | . . 3 ⊢ (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↔ (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵)) |
12 | 1, 6, 11 | 3imtr4i 292 | . 2 ⊢ (𝑥 ∈ dom (𝐴 ∩ 𝐵) → 𝑥 ∈ (dom 𝐴 ∩ dom 𝐵)) |
13 | 12 | ssriv 4012 | 1 ⊢ dom (𝐴 ∩ 𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∃wex 1777 ∈ wcel 2108 ∩ cin 3975 ⊆ wss 3976 〈cop 4654 dom cdm 5700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-dm 5710 |
This theorem is referenced by: rnin 6178 psssdm2 18651 hauseqcn 33844 |
Copyright terms: Public domain | W3C validator |