Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dmin | Structured version Visualization version GIF version |
Description: The domain of an intersection is included in the intersection of the domains. Theorem 6 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.) |
Ref | Expression |
---|---|
dmin | ⊢ dom (𝐴 ∩ 𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.40 1890 | . . 3 ⊢ (∃𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵) → (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵)) | |
2 | vex 3426 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | 2 | eldm2 5799 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 ∩ 𝐵) ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ∩ 𝐵)) |
4 | elin 3899 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∩ 𝐵) ↔ (〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
5 | 4 | exbii 1851 | . . . 4 ⊢ (∃𝑦〈𝑥, 𝑦〉 ∈ (𝐴 ∩ 𝐵) ↔ ∃𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
6 | 3, 5 | bitri 274 | . . 3 ⊢ (𝑥 ∈ dom (𝐴 ∩ 𝐵) ↔ ∃𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
7 | elin 3899 | . . . 4 ⊢ (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↔ (𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ dom 𝐵)) | |
8 | 2 | eldm2 5799 | . . . . 5 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
9 | 2 | eldm2 5799 | . . . . 5 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵) |
10 | 8, 9 | anbi12i 626 | . . . 4 ⊢ ((𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ dom 𝐵) ↔ (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵)) |
11 | 7, 10 | bitri 274 | . . 3 ⊢ (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↔ (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 ∧ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐵)) |
12 | 1, 6, 11 | 3imtr4i 291 | . 2 ⊢ (𝑥 ∈ dom (𝐴 ∩ 𝐵) → 𝑥 ∈ (dom 𝐴 ∩ dom 𝐵)) |
13 | 12 | ssriv 3921 | 1 ⊢ dom (𝐴 ∩ 𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∃wex 1783 ∈ wcel 2108 ∩ cin 3882 ⊆ wss 3883 〈cop 4564 dom cdm 5580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-dm 5590 |
This theorem is referenced by: rnin 6039 psssdm2 18214 hauseqcn 31750 |
Copyright terms: Public domain | W3C validator |