![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmin | Structured version Visualization version GIF version |
Description: The domain of an intersection is included in the intersection of the domains. Theorem 6 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.) |
Ref | Expression |
---|---|
dmin | ⊢ dom (𝐴 ∩ 𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.40 1881 | . . 3 ⊢ (∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵) → (∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐵)) | |
2 | vex 3470 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | 2 | eldm2 5892 | . . . 4 ⊢ (𝑥 ∈ dom (𝐴 ∩ 𝐵) ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ (𝐴 ∩ 𝐵)) |
4 | elin 3957 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∩ 𝐵) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) | |
5 | 4 | exbii 1842 | . . . 4 ⊢ (∃𝑦⟨𝑥, 𝑦⟩ ∈ (𝐴 ∩ 𝐵) ↔ ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
6 | 3, 5 | bitri 275 | . . 3 ⊢ (𝑥 ∈ dom (𝐴 ∩ 𝐵) ↔ ∃𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
7 | elin 3957 | . . . 4 ⊢ (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↔ (𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ dom 𝐵)) | |
8 | 2 | eldm2 5892 | . . . . 5 ⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴) |
9 | 2 | eldm2 5892 | . . . . 5 ⊢ (𝑥 ∈ dom 𝐵 ↔ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐵) |
10 | 8, 9 | anbi12i 626 | . . . 4 ⊢ ((𝑥 ∈ dom 𝐴 ∧ 𝑥 ∈ dom 𝐵) ↔ (∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
11 | 7, 10 | bitri 275 | . . 3 ⊢ (𝑥 ∈ (dom 𝐴 ∩ dom 𝐵) ↔ (∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐴 ∧ ∃𝑦⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
12 | 1, 6, 11 | 3imtr4i 292 | . 2 ⊢ (𝑥 ∈ dom (𝐴 ∩ 𝐵) → 𝑥 ∈ (dom 𝐴 ∩ dom 𝐵)) |
13 | 12 | ssriv 3979 | 1 ⊢ dom (𝐴 ∩ 𝐵) ⊆ (dom 𝐴 ∩ dom 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∃wex 1773 ∈ wcel 2098 ∩ cin 3940 ⊆ wss 3941 ⟨cop 4627 dom cdm 5667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-br 5140 df-dm 5677 |
This theorem is referenced by: rnin 6137 psssdm2 18538 hauseqcn 33370 |
Copyright terms: Public domain | W3C validator |