Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uniin | Structured version Visualization version GIF version |
Description: The class union of the intersection of two classes. Exercise 4.12(n) of [Mendelson] p. 235. See uniinqs 8544 for a condition where equality holds. (Contributed by NM, 4-Dec-2003.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
uniin | ⊢ ∪ (𝐴 ∩ 𝐵) ⊆ (∪ 𝐴 ∩ ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.40 1890 | . . . 4 ⊢ (∃𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) → (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∧ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) | |
2 | elin 3899 | . . . . . . 7 ⊢ (𝑦 ∈ (𝐴 ∩ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
3 | 2 | anbi2i 622 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ (𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
4 | anandi 672 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) | |
5 | 3, 4 | bitri 274 | . . . . 5 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
6 | 5 | exbii 1851 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ ∃𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
7 | eluni 4839 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) | |
8 | eluni 4839 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐵 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) | |
9 | 7, 8 | anbi12i 626 | . . . 4 ⊢ ((𝑥 ∈ ∪ 𝐴 ∧ 𝑥 ∈ ∪ 𝐵) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∧ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
10 | 1, 6, 9 | 3imtr4i 291 | . . 3 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∩ 𝐵)) → (𝑥 ∈ ∪ 𝐴 ∧ 𝑥 ∈ ∪ 𝐵)) |
11 | eluni 4839 | . . 3 ⊢ (𝑥 ∈ ∪ (𝐴 ∩ 𝐵) ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∩ 𝐵))) | |
12 | elin 3899 | . . 3 ⊢ (𝑥 ∈ (∪ 𝐴 ∩ ∪ 𝐵) ↔ (𝑥 ∈ ∪ 𝐴 ∧ 𝑥 ∈ ∪ 𝐵)) | |
13 | 10, 11, 12 | 3imtr4i 291 | . 2 ⊢ (𝑥 ∈ ∪ (𝐴 ∩ 𝐵) → 𝑥 ∈ (∪ 𝐴 ∩ ∪ 𝐵)) |
14 | 13 | ssriv 3921 | 1 ⊢ ∪ (𝐴 ∩ 𝐵) ⊆ (∪ 𝐴 ∩ ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∃wex 1783 ∈ wcel 2108 ∩ cin 3882 ⊆ wss 3883 ∪ cuni 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 |
This theorem is referenced by: uniinqs 8544 psss 18213 tgval 22013 mapdunirnN 39591 |
Copyright terms: Public domain | W3C validator |