| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniin | Structured version Visualization version GIF version | ||
| Description: The class union of the intersection of two classes. Exercise 4.12(n) of [Mendelson] p. 235. See uniinqs 8837 for a condition where equality holds. (Contributed by NM, 4-Dec-2003.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| uniin | ⊢ ∪ (𝐴 ∩ 𝐵) ⊆ (∪ 𝐴 ∩ ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.40 1886 | . . . 4 ⊢ (∃𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) → (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∧ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) | |
| 2 | elin 3967 | . . . . . . 7 ⊢ (𝑦 ∈ (𝐴 ∩ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) | |
| 3 | 2 | anbi2i 623 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ (𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
| 4 | anandi 676 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑦 ∧ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ↔ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) | |
| 5 | 3, 4 | bitri 275 | . . . . 5 ⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
| 6 | 5 | exbii 1848 | . . . 4 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∩ 𝐵)) ↔ ∃𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∧ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
| 7 | eluni 4910 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) | |
| 8 | eluni 4910 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐵 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) | |
| 9 | 7, 8 | anbi12i 628 | . . . 4 ⊢ ((𝑥 ∈ ∪ 𝐴 ∧ 𝑥 ∈ ∪ 𝐵) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) ∧ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))) |
| 10 | 1, 6, 9 | 3imtr4i 292 | . . 3 ⊢ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∩ 𝐵)) → (𝑥 ∈ ∪ 𝐴 ∧ 𝑥 ∈ ∪ 𝐵)) |
| 11 | eluni 4910 | . . 3 ⊢ (𝑥 ∈ ∪ (𝐴 ∩ 𝐵) ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ (𝐴 ∩ 𝐵))) | |
| 12 | elin 3967 | . . 3 ⊢ (𝑥 ∈ (∪ 𝐴 ∩ ∪ 𝐵) ↔ (𝑥 ∈ ∪ 𝐴 ∧ 𝑥 ∈ ∪ 𝐵)) | |
| 13 | 10, 11, 12 | 3imtr4i 292 | . 2 ⊢ (𝑥 ∈ ∪ (𝐴 ∩ 𝐵) → 𝑥 ∈ (∪ 𝐴 ∩ ∪ 𝐵)) |
| 14 | 13 | ssriv 3987 | 1 ⊢ ∪ (𝐴 ∩ 𝐵) ⊆ (∪ 𝐴 ∩ ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∃wex 1779 ∈ wcel 2108 ∩ cin 3950 ⊆ wss 3951 ∪ cuni 4907 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-in 3958 df-ss 3968 df-uni 4908 |
| This theorem is referenced by: uniinqs 8837 psss 18625 tgval 22962 mapdunirnN 41652 |
| Copyright terms: Public domain | W3C validator |