MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniin Structured version   Visualization version   GIF version

Theorem uniin 4879
Description: The class union of the intersection of two classes. Exercise 4.12(n) of [Mendelson] p. 235. See uniinqs 8657 for a condition where equality holds. (Contributed by NM, 4-Dec-2003.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
uniin (𝐴𝐵) ⊆ ( 𝐴 𝐵)

Proof of Theorem uniin
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.40 1888 . . . 4 (∃𝑦((𝑥𝑦𝑦𝐴) ∧ (𝑥𝑦𝑦𝐵)) → (∃𝑦(𝑥𝑦𝑦𝐴) ∧ ∃𝑦(𝑥𝑦𝑦𝐵)))
2 elin 3914 . . . . . . 7 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴𝑦𝐵))
32anbi2i 623 . . . . . 6 ((𝑥𝑦𝑦 ∈ (𝐴𝐵)) ↔ (𝑥𝑦 ∧ (𝑦𝐴𝑦𝐵)))
4 anandi 673 . . . . . 6 ((𝑥𝑦 ∧ (𝑦𝐴𝑦𝐵)) ↔ ((𝑥𝑦𝑦𝐴) ∧ (𝑥𝑦𝑦𝐵)))
53, 4bitri 274 . . . . 5 ((𝑥𝑦𝑦 ∈ (𝐴𝐵)) ↔ ((𝑥𝑦𝑦𝐴) ∧ (𝑥𝑦𝑦𝐵)))
65exbii 1849 . . . 4 (∃𝑦(𝑥𝑦𝑦 ∈ (𝐴𝐵)) ↔ ∃𝑦((𝑥𝑦𝑦𝐴) ∧ (𝑥𝑦𝑦𝐵)))
7 eluni 4855 . . . . 5 (𝑥 𝐴 ↔ ∃𝑦(𝑥𝑦𝑦𝐴))
8 eluni 4855 . . . . 5 (𝑥 𝐵 ↔ ∃𝑦(𝑥𝑦𝑦𝐵))
97, 8anbi12i 627 . . . 4 ((𝑥 𝐴𝑥 𝐵) ↔ (∃𝑦(𝑥𝑦𝑦𝐴) ∧ ∃𝑦(𝑥𝑦𝑦𝐵)))
101, 6, 93imtr4i 291 . . 3 (∃𝑦(𝑥𝑦𝑦 ∈ (𝐴𝐵)) → (𝑥 𝐴𝑥 𝐵))
11 eluni 4855 . . 3 (𝑥 (𝐴𝐵) ↔ ∃𝑦(𝑥𝑦𝑦 ∈ (𝐴𝐵)))
12 elin 3914 . . 3 (𝑥 ∈ ( 𝐴 𝐵) ↔ (𝑥 𝐴𝑥 𝐵))
1310, 11, 123imtr4i 291 . 2 (𝑥 (𝐴𝐵) → 𝑥 ∈ ( 𝐴 𝐵))
1413ssriv 3936 1 (𝐴𝐵) ⊆ ( 𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 396  wex 1780  wcel 2105  cin 3897  wss 3898   cuni 4852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3443  df-in 3905  df-ss 3915  df-uni 4853
This theorem is referenced by:  uniinqs  8657  psss  18395  tgval  22211  mapdunirnN  39926
  Copyright terms: Public domain W3C validator