Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfcnnnub Structured version   Visualization version   GIF version

Theorem rfcnnnub 41284
 Description: Given a real continuous function 𝐹 defined on a compact topological space, there is always a positive integer that is a strict upper bound of its range. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
rfcnnnub.1 𝑡𝐹
rfcnnnub.2 𝑡𝜑
rfcnnnub.3 𝐾 = (topGen‘ran (,))
rfcnnnub.4 (𝜑𝐽 ∈ Comp)
rfcnnnub.5 𝑇 = 𝐽
rfcnnnub.6 (𝜑𝑇 ≠ ∅)
rfcnnnub.7 𝐶 = (𝐽 Cn 𝐾)
rfcnnnub.8 (𝜑𝐹𝐶)
Assertion
Ref Expression
rfcnnnub (𝜑 → ∃𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < 𝑛)
Distinct variable groups:   𝑡,𝑛,𝑇   𝑛,𝐹   𝑡,𝐽   𝑡,𝐾
Allowed substitution hints:   𝜑(𝑡,𝑛)   𝐶(𝑡,𝑛)   𝐹(𝑡)   𝐽(𝑛)   𝐾(𝑛)

Proof of Theorem rfcnnnub
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2975 . . . . . . . 8 𝑠𝐹
2 rfcnnnub.1 . . . . . . . 8 𝑡𝐹
3 nfcv 2975 . . . . . . . 8 𝑠𝑇
4 nfcv 2975 . . . . . . . 8 𝑡𝑇
5 nfv 1909 . . . . . . . 8 𝑠𝜑
6 rfcnnnub.2 . . . . . . . 8 𝑡𝜑
7 rfcnnnub.5 . . . . . . . 8 𝑇 = 𝐽
8 rfcnnnub.3 . . . . . . . 8 𝐾 = (topGen‘ran (,))
9 rfcnnnub.4 . . . . . . . 8 (𝜑𝐽 ∈ Comp)
10 rfcnnnub.8 . . . . . . . . 9 (𝜑𝐹𝐶)
11 rfcnnnub.7 . . . . . . . . 9 𝐶 = (𝐽 Cn 𝐾)
1210, 11eleqtrdi 2921 . . . . . . . 8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
13 rfcnnnub.6 . . . . . . . 8 (𝜑𝑇 ≠ ∅)
141, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13evthf 41275 . . . . . . 7 (𝜑 → ∃𝑠𝑇𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠))
15 df-rex 3142 . . . . . . 7 (∃𝑠𝑇𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ↔ ∃𝑠(𝑠𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠)))
1614, 15sylib 220 . . . . . 6 (𝜑 → ∃𝑠(𝑠𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠)))
178, 7, 11, 10fcnre 41273 . . . . . . . . . 10 (𝜑𝐹:𝑇⟶ℝ)
1817ffvelrnda 6844 . . . . . . . . 9 ((𝜑𝑠𝑇) → (𝐹𝑠) ∈ ℝ)
1918ex 415 . . . . . . . 8 (𝜑 → (𝑠𝑇 → (𝐹𝑠) ∈ ℝ))
2019anim1d 612 . . . . . . 7 (𝜑 → ((𝑠𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠)) → ((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠))))
2120eximdv 1912 . . . . . 6 (𝜑 → (∃𝑠(𝑠𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠)) → ∃𝑠((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠))))
2216, 21mpd 15 . . . . 5 (𝜑 → ∃𝑠((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠)))
2317ffvelrnda 6844 . . . . . . 7 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
2423ex 415 . . . . . 6 (𝜑 → (𝑡𝑇 → (𝐹𝑡) ∈ ℝ))
256, 24ralrimi 3214 . . . . 5 (𝜑 → ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ)
26 19.41v 1944 . . . . 5 (∃𝑠(((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠)) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ↔ (∃𝑠((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠)) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ))
2722, 25, 26sylanbrc 585 . . . 4 (𝜑 → ∃𝑠(((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠)) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ))
28 df-3an 1084 . . . . 5 (((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ↔ (((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠)) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ))
2928exbii 1842 . . . 4 (∃𝑠((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ↔ ∃𝑠(((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠)) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ))
3027, 29sylibr 236 . . 3 (𝜑 → ∃𝑠((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ))
31 nfcv 2975 . . . . . . . . . 10 𝑡𝑠
322, 31nffv 6673 . . . . . . . . 9 𝑡(𝐹𝑠)
3332nfel1 2992 . . . . . . . 8 𝑡(𝐹𝑠) ∈ ℝ
34 nfra1 3217 . . . . . . . 8 𝑡𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠)
35 nfra1 3217 . . . . . . . 8 𝑡𝑡𝑇 (𝐹𝑡) ∈ ℝ
3633, 34, 35nf3an 1896 . . . . . . 7 𝑡((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ)
37 nfv 1909 . . . . . . . 8 𝑡 𝑛 ∈ ℕ
38 nfcv 2975 . . . . . . . . 9 𝑡 <
39 nfcv 2975 . . . . . . . . 9 𝑡𝑛
4032, 38, 39nfbr 5104 . . . . . . . 8 𝑡(𝐹𝑠) < 𝑛
4137, 40nfan 1894 . . . . . . 7 𝑡(𝑛 ∈ ℕ ∧ (𝐹𝑠) < 𝑛)
4236, 41nfan 1894 . . . . . 6 𝑡(((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹𝑠) < 𝑛))
43 simpll3 1209 . . . . . . . . 9 (((((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹𝑠) < 𝑛)) ∧ 𝑡𝑇) → ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ)
44 simpr 487 . . . . . . . . 9 (((((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹𝑠) < 𝑛)) ∧ 𝑡𝑇) → 𝑡𝑇)
45 rsp 3203 . . . . . . . . 9 (∀𝑡𝑇 (𝐹𝑡) ∈ ℝ → (𝑡𝑇 → (𝐹𝑡) ∈ ℝ))
4643, 44, 45sylc 65 . . . . . . . 8 (((((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹𝑠) < 𝑛)) ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
47 simpll1 1207 . . . . . . . 8 (((((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹𝑠) < 𝑛)) ∧ 𝑡𝑇) → (𝐹𝑠) ∈ ℝ)
48 simplrl 775 . . . . . . . . 9 (((((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹𝑠) < 𝑛)) ∧ 𝑡𝑇) → 𝑛 ∈ ℕ)
4948nnred 11645 . . . . . . . 8 (((((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹𝑠) < 𝑛)) ∧ 𝑡𝑇) → 𝑛 ∈ ℝ)
50 simpl2 1187 . . . . . . . . 9 ((((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹𝑠) < 𝑛)) → ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠))
5150r19.21bi 3206 . . . . . . . 8 (((((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹𝑠) < 𝑛)) ∧ 𝑡𝑇) → (𝐹𝑡) ≤ (𝐹𝑠))
52 simplrr 776 . . . . . . . 8 (((((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹𝑠) < 𝑛)) ∧ 𝑡𝑇) → (𝐹𝑠) < 𝑛)
5346, 47, 49, 51, 52lelttrd 10790 . . . . . . 7 (((((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹𝑠) < 𝑛)) ∧ 𝑡𝑇) → (𝐹𝑡) < 𝑛)
5453ex 415 . . . . . 6 ((((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹𝑠) < 𝑛)) → (𝑡𝑇 → (𝐹𝑡) < 𝑛))
5542, 54ralrimi 3214 . . . . 5 ((((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹𝑠) < 𝑛)) → ∀𝑡𝑇 (𝐹𝑡) < 𝑛)
56 arch 11886 . . . . . 6 ((𝐹𝑠) ∈ ℝ → ∃𝑛 ∈ ℕ (𝐹𝑠) < 𝑛)
57563ad2ant1 1128 . . . . 5 (((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) → ∃𝑛 ∈ ℕ (𝐹𝑠) < 𝑛)
5855, 57reximddv 3273 . . . 4 (((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) → ∃𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < 𝑛)
5958eximi 1829 . . 3 (∃𝑠((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) → ∃𝑠𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < 𝑛)
6030, 59syl 17 . 2 (𝜑 → ∃𝑠𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < 𝑛)
61 19.9v 1982 . 2 (∃𝑠𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < 𝑛 ↔ ∃𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < 𝑛)
6260, 61sylib 220 1 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < 𝑛)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   ∧ w3a 1082   = wceq 1531  ∃wex 1774  Ⅎwnf 1778   ∈ wcel 2108  Ⅎwnfc 2959   ≠ wne 3014  ∀wral 3136  ∃wrex 3137  ∅c0 4289  ∪ cuni 4830   class class class wbr 5057  ran crn 5549  ‘cfv 6348  (class class class)co 7148  ℝcr 10528   < clt 10667   ≤ cle 10668  ℕcn 11630  (,)cioo 12730  topGenctg 16703   Cn ccn 21824  Compccmp 21986 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-mulf 10609 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-icc 12737  df-fz 12885  df-fzo 13026  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20529  df-xmet 20530  df-met 20531  df-bl 20532  df-mopn 20533  df-cnfld 20538  df-top 21494  df-topon 21511  df-topsp 21533  df-bases 21546  df-cn 21827  df-cnp 21828  df-cmp 21987  df-tx 22162  df-hmeo 22355  df-xms 22922  df-ms 22923  df-tms 22924 This theorem is referenced by:  stoweidlem60  42336
 Copyright terms: Public domain W3C validator