| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nfcv 2905 | . . . . . . . 8
⊢
Ⅎ𝑠𝐹 | 
| 2 |  | rfcnnnub.1 | . . . . . . . 8
⊢
Ⅎ𝑡𝐹 | 
| 3 |  | nfcv 2905 | . . . . . . . 8
⊢
Ⅎ𝑠𝑇 | 
| 4 |  | nfcv 2905 | . . . . . . . 8
⊢
Ⅎ𝑡𝑇 | 
| 5 |  | nfv 1914 | . . . . . . . 8
⊢
Ⅎ𝑠𝜑 | 
| 6 |  | rfcnnnub.2 | . . . . . . . 8
⊢
Ⅎ𝑡𝜑 | 
| 7 |  | rfcnnnub.5 | . . . . . . . 8
⊢ 𝑇 = ∪
𝐽 | 
| 8 |  | rfcnnnub.3 | . . . . . . . 8
⊢ 𝐾 = (topGen‘ran
(,)) | 
| 9 |  | rfcnnnub.4 | . . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ Comp) | 
| 10 |  | rfcnnnub.8 | . . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ 𝐶) | 
| 11 |  | rfcnnnub.7 | . . . . . . . . 9
⊢ 𝐶 = (𝐽 Cn 𝐾) | 
| 12 | 10, 11 | eleqtrdi 2851 | . . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | 
| 13 |  | rfcnnnub.6 | . . . . . . . 8
⊢ (𝜑 → 𝑇 ≠ ∅) | 
| 14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 12,
13 | evthf 45032 | . . . . . . 7
⊢ (𝜑 → ∃𝑠 ∈ 𝑇 ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠)) | 
| 15 |  | df-rex 3071 | . . . . . . 7
⊢
(∃𝑠 ∈
𝑇 ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠) ↔ ∃𝑠(𝑠 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠))) | 
| 16 | 14, 15 | sylib 218 | . . . . . 6
⊢ (𝜑 → ∃𝑠(𝑠 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠))) | 
| 17 | 8, 7, 11, 10 | fcnre 45030 | . . . . . . . . . 10
⊢ (𝜑 → 𝐹:𝑇⟶ℝ) | 
| 18 | 17 | ffvelcdmda 7104 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ 𝑇) → (𝐹‘𝑠) ∈ ℝ) | 
| 19 | 18 | ex 412 | . . . . . . . 8
⊢ (𝜑 → (𝑠 ∈ 𝑇 → (𝐹‘𝑠) ∈ ℝ)) | 
| 20 | 19 | anim1d 611 | . . . . . . 7
⊢ (𝜑 → ((𝑠 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠)) → ((𝐹‘𝑠) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠)))) | 
| 21 | 20 | eximdv 1917 | . . . . . 6
⊢ (𝜑 → (∃𝑠(𝑠 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠)) → ∃𝑠((𝐹‘𝑠) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠)))) | 
| 22 | 16, 21 | mpd 15 | . . . . 5
⊢ (𝜑 → ∃𝑠((𝐹‘𝑠) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠))) | 
| 23 | 17 | ffvelcdmda 7104 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℝ) | 
| 24 | 23 | ex 412 | . . . . . 6
⊢ (𝜑 → (𝑡 ∈ 𝑇 → (𝐹‘𝑡) ∈ ℝ)) | 
| 25 | 6, 24 | ralrimi 3257 | . . . . 5
⊢ (𝜑 → ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ∈ ℝ) | 
| 26 |  | 19.41v 1949 | . . . . 5
⊢
(∃𝑠(((𝐹‘𝑠) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠)) ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ∈ ℝ) ↔ (∃𝑠((𝐹‘𝑠) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠)) ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ∈ ℝ)) | 
| 27 | 22, 25, 26 | sylanbrc 583 | . . . 4
⊢ (𝜑 → ∃𝑠(((𝐹‘𝑠) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠)) ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ∈ ℝ)) | 
| 28 |  | df-3an 1089 | . . . . 5
⊢ (((𝐹‘𝑠) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠) ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ∈ ℝ) ↔ (((𝐹‘𝑠) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠)) ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ∈ ℝ)) | 
| 29 | 28 | exbii 1848 | . . . 4
⊢
(∃𝑠((𝐹‘𝑠) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠) ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ∈ ℝ) ↔ ∃𝑠(((𝐹‘𝑠) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠)) ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ∈ ℝ)) | 
| 30 | 27, 29 | sylibr 234 | . . 3
⊢ (𝜑 → ∃𝑠((𝐹‘𝑠) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠) ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ∈ ℝ)) | 
| 31 |  | nfcv 2905 | . . . . . . . . . 10
⊢
Ⅎ𝑡𝑠 | 
| 32 | 2, 31 | nffv 6916 | . . . . . . . . 9
⊢
Ⅎ𝑡(𝐹‘𝑠) | 
| 33 | 32 | nfel1 2922 | . . . . . . . 8
⊢
Ⅎ𝑡(𝐹‘𝑠) ∈ ℝ | 
| 34 |  | nfra1 3284 | . . . . . . . 8
⊢
Ⅎ𝑡∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠) | 
| 35 |  | nfra1 3284 | . . . . . . . 8
⊢
Ⅎ𝑡∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ∈ ℝ | 
| 36 | 33, 34, 35 | nf3an 1901 | . . . . . . 7
⊢
Ⅎ𝑡((𝐹‘𝑠) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠) ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ∈ ℝ) | 
| 37 |  | nfv 1914 | . . . . . . . 8
⊢
Ⅎ𝑡 𝑛 ∈ ℕ | 
| 38 |  | nfcv 2905 | . . . . . . . . 9
⊢
Ⅎ𝑡
< | 
| 39 |  | nfcv 2905 | . . . . . . . . 9
⊢
Ⅎ𝑡𝑛 | 
| 40 | 32, 38, 39 | nfbr 5190 | . . . . . . . 8
⊢
Ⅎ𝑡(𝐹‘𝑠) < 𝑛 | 
| 41 | 37, 40 | nfan 1899 | . . . . . . 7
⊢
Ⅎ𝑡(𝑛 ∈ ℕ ∧ (𝐹‘𝑠) < 𝑛) | 
| 42 | 36, 41 | nfan 1899 | . . . . . 6
⊢
Ⅎ𝑡(((𝐹‘𝑠) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠) ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹‘𝑠) < 𝑛)) | 
| 43 |  | simpll3 1215 | . . . . . . . . 9
⊢
(((((𝐹‘𝑠) ∈ ℝ ∧
∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠) ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹‘𝑠) < 𝑛)) ∧ 𝑡 ∈ 𝑇) → ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ∈ ℝ) | 
| 44 |  | simpr 484 | . . . . . . . . 9
⊢
(((((𝐹‘𝑠) ∈ ℝ ∧
∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠) ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹‘𝑠) < 𝑛)) ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ 𝑇) | 
| 45 |  | rsp 3247 | . . . . . . . . 9
⊢
(∀𝑡 ∈
𝑇 (𝐹‘𝑡) ∈ ℝ → (𝑡 ∈ 𝑇 → (𝐹‘𝑡) ∈ ℝ)) | 
| 46 | 43, 44, 45 | sylc 65 | . . . . . . . 8
⊢
(((((𝐹‘𝑠) ∈ ℝ ∧
∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠) ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹‘𝑠) < 𝑛)) ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ∈ ℝ) | 
| 47 |  | simpll1 1213 | . . . . . . . 8
⊢
(((((𝐹‘𝑠) ∈ ℝ ∧
∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠) ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹‘𝑠) < 𝑛)) ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑠) ∈ ℝ) | 
| 48 |  | simplrl 777 | . . . . . . . . 9
⊢
(((((𝐹‘𝑠) ∈ ℝ ∧
∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠) ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹‘𝑠) < 𝑛)) ∧ 𝑡 ∈ 𝑇) → 𝑛 ∈ ℕ) | 
| 49 | 48 | nnred 12281 | . . . . . . . 8
⊢
(((((𝐹‘𝑠) ∈ ℝ ∧
∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠) ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹‘𝑠) < 𝑛)) ∧ 𝑡 ∈ 𝑇) → 𝑛 ∈ ℝ) | 
| 50 |  | simpl2 1193 | . . . . . . . . 9
⊢ ((((𝐹‘𝑠) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠) ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹‘𝑠) < 𝑛)) → ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠)) | 
| 51 | 50 | r19.21bi 3251 | . . . . . . . 8
⊢
(((((𝐹‘𝑠) ∈ ℝ ∧
∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠) ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹‘𝑠) < 𝑛)) ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) ≤ (𝐹‘𝑠)) | 
| 52 |  | simplrr 778 | . . . . . . . 8
⊢
(((((𝐹‘𝑠) ∈ ℝ ∧
∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠) ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹‘𝑠) < 𝑛)) ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑠) < 𝑛) | 
| 53 | 46, 47, 49, 51, 52 | lelttrd 11419 | . . . . . . 7
⊢
(((((𝐹‘𝑠) ∈ ℝ ∧
∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠) ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹‘𝑠) < 𝑛)) ∧ 𝑡 ∈ 𝑇) → (𝐹‘𝑡) < 𝑛) | 
| 54 | 53 | ex 412 | . . . . . 6
⊢ ((((𝐹‘𝑠) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠) ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹‘𝑠) < 𝑛)) → (𝑡 ∈ 𝑇 → (𝐹‘𝑡) < 𝑛)) | 
| 55 | 42, 54 | ralrimi 3257 | . . . . 5
⊢ ((((𝐹‘𝑠) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠) ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹‘𝑠) < 𝑛)) → ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) < 𝑛) | 
| 56 |  | arch 12523 | . . . . . 6
⊢ ((𝐹‘𝑠) ∈ ℝ → ∃𝑛 ∈ ℕ (𝐹‘𝑠) < 𝑛) | 
| 57 | 56 | 3ad2ant1 1134 | . . . . 5
⊢ (((𝐹‘𝑠) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠) ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ∈ ℝ) → ∃𝑛 ∈ ℕ (𝐹‘𝑠) < 𝑛) | 
| 58 | 55, 57 | reximddv 3171 | . . . 4
⊢ (((𝐹‘𝑠) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠) ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ∈ ℝ) → ∃𝑛 ∈ ℕ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) < 𝑛) | 
| 59 | 58 | eximi 1835 | . . 3
⊢
(∃𝑠((𝐹‘𝑠) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑠) ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ∈ ℝ) → ∃𝑠∃𝑛 ∈ ℕ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) < 𝑛) | 
| 60 | 30, 59 | syl 17 | . 2
⊢ (𝜑 → ∃𝑠∃𝑛 ∈ ℕ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) < 𝑛) | 
| 61 |  | 19.9v 1983 | . 2
⊢
(∃𝑠∃𝑛 ∈ ℕ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) < 𝑛 ↔ ∃𝑛 ∈ ℕ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) < 𝑛) | 
| 62 | 60, 61 | sylib 218 | 1
⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) < 𝑛) |