Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfcnnnub Structured version   Visualization version   GIF version

Theorem rfcnnnub 45027
Description: Given a real continuous function 𝐹 defined on a compact topological space, there is always a positive integer that is a strict upper bound of its range. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
rfcnnnub.1 𝑡𝐹
rfcnnnub.2 𝑡𝜑
rfcnnnub.3 𝐾 = (topGen‘ran (,))
rfcnnnub.4 (𝜑𝐽 ∈ Comp)
rfcnnnub.5 𝑇 = 𝐽
rfcnnnub.6 (𝜑𝑇 ≠ ∅)
rfcnnnub.7 𝐶 = (𝐽 Cn 𝐾)
rfcnnnub.8 (𝜑𝐹𝐶)
Assertion
Ref Expression
rfcnnnub (𝜑 → ∃𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < 𝑛)
Distinct variable groups:   𝑡,𝑛,𝑇   𝑛,𝐹   𝑡,𝐽   𝑡,𝐾
Allowed substitution hints:   𝜑(𝑡,𝑛)   𝐶(𝑡,𝑛)   𝐹(𝑡)   𝐽(𝑛)   𝐾(𝑛)

Proof of Theorem rfcnnnub
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2899 . . . . . . . 8 𝑠𝐹
2 rfcnnnub.1 . . . . . . . 8 𝑡𝐹
3 nfcv 2899 . . . . . . . 8 𝑠𝑇
4 nfcv 2899 . . . . . . . 8 𝑡𝑇
5 nfv 1914 . . . . . . . 8 𝑠𝜑
6 rfcnnnub.2 . . . . . . . 8 𝑡𝜑
7 rfcnnnub.5 . . . . . . . 8 𝑇 = 𝐽
8 rfcnnnub.3 . . . . . . . 8 𝐾 = (topGen‘ran (,))
9 rfcnnnub.4 . . . . . . . 8 (𝜑𝐽 ∈ Comp)
10 rfcnnnub.8 . . . . . . . . 9 (𝜑𝐹𝐶)
11 rfcnnnub.7 . . . . . . . . 9 𝐶 = (𝐽 Cn 𝐾)
1210, 11eleqtrdi 2845 . . . . . . . 8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
13 rfcnnnub.6 . . . . . . . 8 (𝜑𝑇 ≠ ∅)
141, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13evthf 45018 . . . . . . 7 (𝜑 → ∃𝑠𝑇𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠))
15 df-rex 3062 . . . . . . 7 (∃𝑠𝑇𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ↔ ∃𝑠(𝑠𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠)))
1614, 15sylib 218 . . . . . 6 (𝜑 → ∃𝑠(𝑠𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠)))
178, 7, 11, 10fcnre 45016 . . . . . . . . . 10 (𝜑𝐹:𝑇⟶ℝ)
1817ffvelcdmda 7079 . . . . . . . . 9 ((𝜑𝑠𝑇) → (𝐹𝑠) ∈ ℝ)
1918ex 412 . . . . . . . 8 (𝜑 → (𝑠𝑇 → (𝐹𝑠) ∈ ℝ))
2019anim1d 611 . . . . . . 7 (𝜑 → ((𝑠𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠)) → ((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠))))
2120eximdv 1917 . . . . . 6 (𝜑 → (∃𝑠(𝑠𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠)) → ∃𝑠((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠))))
2216, 21mpd 15 . . . . 5 (𝜑 → ∃𝑠((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠)))
2317ffvelcdmda 7079 . . . . . . 7 ((𝜑𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
2423ex 412 . . . . . 6 (𝜑 → (𝑡𝑇 → (𝐹𝑡) ∈ ℝ))
256, 24ralrimi 3244 . . . . 5 (𝜑 → ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ)
26 19.41v 1949 . . . . 5 (∃𝑠(((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠)) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ↔ (∃𝑠((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠)) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ))
2722, 25, 26sylanbrc 583 . . . 4 (𝜑 → ∃𝑠(((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠)) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ))
28 df-3an 1088 . . . . 5 (((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ↔ (((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠)) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ))
2928exbii 1848 . . . 4 (∃𝑠((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ↔ ∃𝑠(((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠)) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ))
3027, 29sylibr 234 . . 3 (𝜑 → ∃𝑠((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ))
31 nfcv 2899 . . . . . . . . . 10 𝑡𝑠
322, 31nffv 6891 . . . . . . . . 9 𝑡(𝐹𝑠)
3332nfel1 2916 . . . . . . . 8 𝑡(𝐹𝑠) ∈ ℝ
34 nfra1 3270 . . . . . . . 8 𝑡𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠)
35 nfra1 3270 . . . . . . . 8 𝑡𝑡𝑇 (𝐹𝑡) ∈ ℝ
3633, 34, 35nf3an 1901 . . . . . . 7 𝑡((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ)
37 nfv 1914 . . . . . . . 8 𝑡 𝑛 ∈ ℕ
38 nfcv 2899 . . . . . . . . 9 𝑡 <
39 nfcv 2899 . . . . . . . . 9 𝑡𝑛
4032, 38, 39nfbr 5171 . . . . . . . 8 𝑡(𝐹𝑠) < 𝑛
4137, 40nfan 1899 . . . . . . 7 𝑡(𝑛 ∈ ℕ ∧ (𝐹𝑠) < 𝑛)
4236, 41nfan 1899 . . . . . 6 𝑡(((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹𝑠) < 𝑛))
43 simpll3 1215 . . . . . . . . 9 (((((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹𝑠) < 𝑛)) ∧ 𝑡𝑇) → ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ)
44 simpr 484 . . . . . . . . 9 (((((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹𝑠) < 𝑛)) ∧ 𝑡𝑇) → 𝑡𝑇)
45 rsp 3234 . . . . . . . . 9 (∀𝑡𝑇 (𝐹𝑡) ∈ ℝ → (𝑡𝑇 → (𝐹𝑡) ∈ ℝ))
4643, 44, 45sylc 65 . . . . . . . 8 (((((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹𝑠) < 𝑛)) ∧ 𝑡𝑇) → (𝐹𝑡) ∈ ℝ)
47 simpll1 1213 . . . . . . . 8 (((((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹𝑠) < 𝑛)) ∧ 𝑡𝑇) → (𝐹𝑠) ∈ ℝ)
48 simplrl 776 . . . . . . . . 9 (((((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹𝑠) < 𝑛)) ∧ 𝑡𝑇) → 𝑛 ∈ ℕ)
4948nnred 12260 . . . . . . . 8 (((((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹𝑠) < 𝑛)) ∧ 𝑡𝑇) → 𝑛 ∈ ℝ)
50 simpl2 1193 . . . . . . . . 9 ((((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹𝑠) < 𝑛)) → ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠))
5150r19.21bi 3238 . . . . . . . 8 (((((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹𝑠) < 𝑛)) ∧ 𝑡𝑇) → (𝐹𝑡) ≤ (𝐹𝑠))
52 simplrr 777 . . . . . . . 8 (((((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹𝑠) < 𝑛)) ∧ 𝑡𝑇) → (𝐹𝑠) < 𝑛)
5346, 47, 49, 51, 52lelttrd 11398 . . . . . . 7 (((((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹𝑠) < 𝑛)) ∧ 𝑡𝑇) → (𝐹𝑡) < 𝑛)
5453ex 412 . . . . . 6 ((((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹𝑠) < 𝑛)) → (𝑡𝑇 → (𝐹𝑡) < 𝑛))
5542, 54ralrimi 3244 . . . . 5 ((((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) ∧ (𝑛 ∈ ℕ ∧ (𝐹𝑠) < 𝑛)) → ∀𝑡𝑇 (𝐹𝑡) < 𝑛)
56 arch 12503 . . . . . 6 ((𝐹𝑠) ∈ ℝ → ∃𝑛 ∈ ℕ (𝐹𝑠) < 𝑛)
57563ad2ant1 1133 . . . . 5 (((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) → ∃𝑛 ∈ ℕ (𝐹𝑠) < 𝑛)
5855, 57reximddv 3157 . . . 4 (((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) → ∃𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < 𝑛)
5958eximi 1835 . . 3 (∃𝑠((𝐹𝑠) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑠) ∧ ∀𝑡𝑇 (𝐹𝑡) ∈ ℝ) → ∃𝑠𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < 𝑛)
6030, 59syl 17 . 2 (𝜑 → ∃𝑠𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < 𝑛)
61 19.9v 1984 . 2 (∃𝑠𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < 𝑛 ↔ ∃𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < 𝑛)
6260, 61sylib 218 1 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑡𝑇 (𝐹𝑡) < 𝑛)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wnf 1783  wcel 2109  wnfc 2884  wne 2933  wral 3052  wrex 3061  c0 4313   cuni 4888   class class class wbr 5124  ran crn 5660  cfv 6536  (class class class)co 7410  cr 11133   < clt 11274  cle 11275  cn 12245  (,)cioo 13367  topGenctg 17456   Cn ccn 23167  Compccmp 23329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-icc 13374  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cn 23170  df-cnp 23171  df-cmp 23330  df-tx 23505  df-hmeo 23698  df-xms 24264  df-ms 24265  df-tms 24266
This theorem is referenced by:  stoweidlem60  46056
  Copyright terms: Public domain W3C validator