![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > coss0 | Structured version Visualization version GIF version |
Description: Cosets by the empty set are the empty set. (Contributed by Peter Mazsa, 22-Oct-2019.) |
Ref | Expression |
---|---|
coss0 | ⊢ ≀ ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcoss2 37271 | . 2 ⊢ ≀ ∅ = {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅)} | |
2 | ec0 37226 | . . . . . . 7 ⊢ [𝑥]∅ = ∅ | |
3 | 2 | eleq2i 2825 | . . . . . 6 ⊢ (𝑦 ∈ [𝑥]∅ ↔ 𝑦 ∈ ∅) |
4 | 2 | eleq2i 2825 | . . . . . 6 ⊢ (𝑧 ∈ [𝑥]∅ ↔ 𝑧 ∈ ∅) |
5 | 3, 4 | anbi12i 627 | . . . . 5 ⊢ ((𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅) ↔ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)) |
6 | 5 | exbii 1850 | . . . 4 ⊢ (∃𝑥(𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅) ↔ ∃𝑥(𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)) |
7 | 19.9v 1987 | . . . 4 ⊢ (∃𝑥(𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) ↔ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)) | |
8 | 6, 7 | bitri 274 | . . 3 ⊢ (∃𝑥(𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅) ↔ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)) |
9 | 8 | opabbii 5214 | . 2 ⊢ {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅)} = {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)} |
10 | prnzg 4781 | . . . . . 6 ⊢ (𝑦 ∈ V → {𝑦, 𝑧} ≠ ∅) | |
11 | 10 | elv 3480 | . . . . 5 ⊢ {𝑦, 𝑧} ≠ ∅ |
12 | ss0b 4396 | . . . . 5 ⊢ ({𝑦, 𝑧} ⊆ ∅ ↔ {𝑦, 𝑧} = ∅) | |
13 | 11, 12 | nemtbir 3038 | . . . 4 ⊢ ¬ {𝑦, 𝑧} ⊆ ∅ |
14 | prssg 4821 | . . . . 5 ⊢ ((𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) ↔ {𝑦, 𝑧} ⊆ ∅)) | |
15 | 14 | el2v 3482 | . . . 4 ⊢ ((𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) ↔ {𝑦, 𝑧} ⊆ ∅) |
16 | 13, 15 | mtbir 322 | . . 3 ⊢ ¬ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) |
17 | 16 | opabf 37225 | . 2 ⊢ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)} = ∅ |
18 | 1, 9, 17 | 3eqtri 2764 | 1 ⊢ ≀ ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ≠ wne 2940 Vcvv 3474 ⊆ wss 3947 ∅c0 4321 {cpr 4629 {copab 5209 [cec 8697 ≀ ccoss 37031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-cnv 5683 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ec 8701 df-coss 37269 |
This theorem is referenced by: eqvrel0 37644 |
Copyright terms: Public domain | W3C validator |