![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > coss0 | Structured version Visualization version GIF version |
Description: Cosets by the empty set are the empty set. (Contributed by Peter Mazsa, 22-Oct-2019.) |
Ref | Expression |
---|---|
coss0 | ⊢ ≀ ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcoss2 38395 | . 2 ⊢ ≀ ∅ = {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅)} | |
2 | ec0 38351 | . . . . . . 7 ⊢ [𝑥]∅ = ∅ | |
3 | 2 | eleq2i 2831 | . . . . . 6 ⊢ (𝑦 ∈ [𝑥]∅ ↔ 𝑦 ∈ ∅) |
4 | 2 | eleq2i 2831 | . . . . . 6 ⊢ (𝑧 ∈ [𝑥]∅ ↔ 𝑧 ∈ ∅) |
5 | 3, 4 | anbi12i 628 | . . . . 5 ⊢ ((𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅) ↔ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)) |
6 | 5 | exbii 1845 | . . . 4 ⊢ (∃𝑥(𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅) ↔ ∃𝑥(𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)) |
7 | 19.9v 1981 | . . . 4 ⊢ (∃𝑥(𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) ↔ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)) | |
8 | 6, 7 | bitri 275 | . . 3 ⊢ (∃𝑥(𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅) ↔ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)) |
9 | 8 | opabbii 5215 | . 2 ⊢ {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)} |
10 | prnzg 4783 | . . . . . 6 ⊢ (𝑦 ∈ V → {𝑦, 𝑧} ≠ ∅) | |
11 | 10 | elv 3483 | . . . . 5 ⊢ {𝑦, 𝑧} ≠ ∅ |
12 | ss0b 4407 | . . . . 5 ⊢ ({𝑦, 𝑧} ⊆ ∅ ↔ {𝑦, 𝑧} = ∅) | |
13 | 11, 12 | nemtbir 3036 | . . . 4 ⊢ ¬ {𝑦, 𝑧} ⊆ ∅ |
14 | prssg 4824 | . . . . 5 ⊢ ((𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) ↔ {𝑦, 𝑧} ⊆ ∅)) | |
15 | 14 | el2v 3485 | . . . 4 ⊢ ((𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) ↔ {𝑦, 𝑧} ⊆ ∅) |
16 | 13, 15 | mtbir 323 | . . 3 ⊢ ¬ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) |
17 | 16 | opabf 38350 | . 2 ⊢ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)} = ∅ |
18 | 1, 9, 17 | 3eqtri 2767 | 1 ⊢ ≀ ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 ≠ wne 2938 Vcvv 3478 ⊆ wss 3963 ∅c0 4339 {cpr 4633 {copab 5210 [cec 8742 ≀ ccoss 38162 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ec 8746 df-coss 38393 |
This theorem is referenced by: eqvrel0 38768 |
Copyright terms: Public domain | W3C validator |