Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > coss0 | Structured version Visualization version GIF version |
Description: Cosets by the empty set are the empty set. (Contributed by Peter Mazsa, 22-Oct-2019.) |
Ref | Expression |
---|---|
coss0 | ⊢ ≀ ∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcoss2 36539 | . 2 ⊢ ≀ ∅ = {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅)} | |
2 | ec0 36499 | . . . . . . 7 ⊢ [𝑥]∅ = ∅ | |
3 | 2 | eleq2i 2830 | . . . . . 6 ⊢ (𝑦 ∈ [𝑥]∅ ↔ 𝑦 ∈ ∅) |
4 | 2 | eleq2i 2830 | . . . . . 6 ⊢ (𝑧 ∈ [𝑥]∅ ↔ 𝑧 ∈ ∅) |
5 | 3, 4 | anbi12i 627 | . . . . 5 ⊢ ((𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅) ↔ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)) |
6 | 5 | exbii 1850 | . . . 4 ⊢ (∃𝑥(𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅) ↔ ∃𝑥(𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)) |
7 | 19.9v 1987 | . . . 4 ⊢ (∃𝑥(𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) ↔ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)) | |
8 | 6, 7 | bitri 274 | . . 3 ⊢ (∃𝑥(𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅) ↔ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)) |
9 | 8 | opabbii 5141 | . 2 ⊢ {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)} |
10 | prnzg 4714 | . . . . . 6 ⊢ (𝑦 ∈ V → {𝑦, 𝑧} ≠ ∅) | |
11 | 10 | elv 3438 | . . . . 5 ⊢ {𝑦, 𝑧} ≠ ∅ |
12 | ss0b 4331 | . . . . 5 ⊢ ({𝑦, 𝑧} ⊆ ∅ ↔ {𝑦, 𝑧} = ∅) | |
13 | 11, 12 | nemtbir 3040 | . . . 4 ⊢ ¬ {𝑦, 𝑧} ⊆ ∅ |
14 | prssg 4752 | . . . . 5 ⊢ ((𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) ↔ {𝑦, 𝑧} ⊆ ∅)) | |
15 | 14 | el2v 3440 | . . . 4 ⊢ ((𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) ↔ {𝑦, 𝑧} ⊆ ∅) |
16 | 13, 15 | mtbir 323 | . . 3 ⊢ ¬ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) |
17 | 16 | opabf 36498 | . 2 ⊢ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)} = ∅ |
18 | 1, 9, 17 | 3eqtri 2770 | 1 ⊢ ≀ ∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 ⊆ wss 3887 ∅c0 4256 {cpr 4563 {copab 5136 [cec 8496 ≀ ccoss 36333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ec 8500 df-coss 36537 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |