| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > coss0 | Structured version Visualization version GIF version | ||
| Description: Cosets by the empty set are the empty set. (Contributed by Peter Mazsa, 22-Oct-2019.) |
| Ref | Expression |
|---|---|
| coss0 | ⊢ ≀ ∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcoss2 38449 | . 2 ⊢ ≀ ∅ = {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅)} | |
| 2 | ec0 38396 | . . . . . . 7 ⊢ [𝑥]∅ = ∅ | |
| 3 | 2 | eleq2i 2823 | . . . . . 6 ⊢ (𝑦 ∈ [𝑥]∅ ↔ 𝑦 ∈ ∅) |
| 4 | 2 | eleq2i 2823 | . . . . . 6 ⊢ (𝑧 ∈ [𝑥]∅ ↔ 𝑧 ∈ ∅) |
| 5 | 3, 4 | anbi12i 628 | . . . . 5 ⊢ ((𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅) ↔ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)) |
| 6 | 5 | exbii 1849 | . . . 4 ⊢ (∃𝑥(𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅) ↔ ∃𝑥(𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)) |
| 7 | 19.9v 1985 | . . . 4 ⊢ (∃𝑥(𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) ↔ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)) | |
| 8 | 6, 7 | bitri 275 | . . 3 ⊢ (∃𝑥(𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅) ↔ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)) |
| 9 | 8 | opabbii 5158 | . 2 ⊢ {〈𝑦, 𝑧〉 ∣ ∃𝑥(𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)} |
| 10 | prnzg 4731 | . . . . . 6 ⊢ (𝑦 ∈ V → {𝑦, 𝑧} ≠ ∅) | |
| 11 | 10 | elv 3441 | . . . . 5 ⊢ {𝑦, 𝑧} ≠ ∅ |
| 12 | ss0b 4351 | . . . . 5 ⊢ ({𝑦, 𝑧} ⊆ ∅ ↔ {𝑦, 𝑧} = ∅) | |
| 13 | 11, 12 | nemtbir 3024 | . . . 4 ⊢ ¬ {𝑦, 𝑧} ⊆ ∅ |
| 14 | prssg 4771 | . . . . 5 ⊢ ((𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) ↔ {𝑦, 𝑧} ⊆ ∅)) | |
| 15 | 14 | el2v 3443 | . . . 4 ⊢ ((𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) ↔ {𝑦, 𝑧} ⊆ ∅) |
| 16 | 13, 15 | mtbir 323 | . . 3 ⊢ ¬ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) |
| 17 | 16 | opabf 38395 | . 2 ⊢ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)} = ∅ |
| 18 | 1, 9, 17 | 3eqtri 2758 | 1 ⊢ ≀ ∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ⊆ wss 3902 ∅c0 4283 {cpr 4578 {copab 5153 [cec 8620 ≀ ccoss 38214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ec 8624 df-coss 38447 |
| This theorem is referenced by: eqvrel0 38823 |
| Copyright terms: Public domain | W3C validator |