Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coss0 Structured version   Visualization version   GIF version

Theorem coss0 37852
Description: Cosets by the empty set are the empty set. (Contributed by Peter Mazsa, 22-Oct-2019.)
Assertion
Ref Expression
coss0 ≀ ∅ = ∅

Proof of Theorem coss0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcoss2 37786 . 2 ≀ ∅ = {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅)}
2 ec0 37741 . . . . . . 7 [𝑥]∅ = ∅
32eleq2i 2817 . . . . . 6 (𝑦 ∈ [𝑥]∅ ↔ 𝑦 ∈ ∅)
42eleq2i 2817 . . . . . 6 (𝑧 ∈ [𝑥]∅ ↔ 𝑧 ∈ ∅)
53, 4anbi12i 626 . . . . 5 ((𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅) ↔ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅))
65exbii 1842 . . . 4 (∃𝑥(𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅) ↔ ∃𝑥(𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅))
7 19.9v 1979 . . . 4 (∃𝑥(𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) ↔ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅))
86, 7bitri 275 . . 3 (∃𝑥(𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅) ↔ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅))
98opabbii 5206 . 2 {⟨𝑦, 𝑧⟩ ∣ ∃𝑥(𝑦 ∈ [𝑥]∅ ∧ 𝑧 ∈ [𝑥]∅)} = {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)}
10 prnzg 4775 . . . . . 6 (𝑦 ∈ V → {𝑦, 𝑧} ≠ ∅)
1110elv 3472 . . . . 5 {𝑦, 𝑧} ≠ ∅
12 ss0b 4390 . . . . 5 ({𝑦, 𝑧} ⊆ ∅ ↔ {𝑦, 𝑧} = ∅)
1311, 12nemtbir 3030 . . . 4 ¬ {𝑦, 𝑧} ⊆ ∅
14 prssg 4815 . . . . 5 ((𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) ↔ {𝑦, 𝑧} ⊆ ∅))
1514el2v 3474 . . . 4 ((𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅) ↔ {𝑦, 𝑧} ⊆ ∅)
1613, 15mtbir 323 . . 3 ¬ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)
1716opabf 37740 . 2 {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ ∅ ∧ 𝑧 ∈ ∅)} = ∅
181, 9, 173eqtri 2756 1 ≀ ∅ = ∅
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1533  wex 1773  wcel 2098  wne 2932  Vcvv 3466  wss 3941  c0 4315  {cpr 4623  {copab 5201  [cec 8698  ccoss 37546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-br 5140  df-opab 5202  df-xp 5673  df-cnv 5675  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ec 8702  df-coss 37784
This theorem is referenced by:  eqvrel0  38159
  Copyright terms: Public domain W3C validator