Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  volfiniune Structured version   Visualization version   GIF version

Theorem volfiniune 34210
Description: The Lebesgue measure function is countably additive. This theorem is to volfiniun 25595 what voliune 34209 is to voliun 25602. (Contributed by Thierry Arnoux, 16-Oct-2017.)
Assertion
Ref Expression
volfiniune ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) → (vol‘ 𝑛𝐴 𝐵) = Σ*𝑛𝐴(vol‘𝐵))
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐵(𝑛)

Proof of Theorem volfiniune
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1190 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → 𝐴 ∈ Fin)
2 simpl2 1191 . . . . 5 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → ∀𝑛𝐴 𝐵 ∈ dom vol)
3 simpr 484 . . . . 5 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ)
4 r19.26 3108 . . . . 5 (∀𝑛𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ↔ (∀𝑛𝐴 𝐵 ∈ dom vol ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ))
52, 3, 4sylanbrc 583 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → ∀𝑛𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ))
6 simpl3 1192 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → Disj 𝑛𝐴 𝐵)
7 volfiniun 25595 . . . 4 ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑛𝐴 𝐵) → (vol‘ 𝑛𝐴 𝐵) = Σ𝑛𝐴 (vol‘𝐵))
81, 5, 6, 7syl3anc 1370 . . 3 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → (vol‘ 𝑛𝐴 𝐵) = Σ𝑛𝐴 (vol‘𝐵))
9 nfcv 2902 . . . 4 𝑛𝐴
109nfel1 2919 . . . . . 6 𝑛 𝐴 ∈ Fin
11 nfra1 3281 . . . . . 6 𝑛𝑛𝐴 𝐵 ∈ dom vol
12 nfdisj1 5128 . . . . . 6 𝑛Disj 𝑛𝐴 𝐵
1310, 11, 12nf3an 1898 . . . . 5 𝑛(𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵)
14 nfra1 3281 . . . . 5 𝑛𝑛𝐴 (vol‘𝐵) ∈ ℝ
1513, 14nfan 1896 . . . 4 𝑛((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ)
163r19.21bi 3248 . . . . 5 ((((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) ∧ 𝑛𝐴) → (vol‘𝐵) ∈ ℝ)
17 rspa 3245 . . . . . . . 8 ((∀𝑛𝐴 𝐵 ∈ dom vol ∧ 𝑛𝐴) → 𝐵 ∈ dom vol)
18 volf 25577 . . . . . . . . 9 vol:dom vol⟶(0[,]+∞)
1918ffvelcdmi 7102 . . . . . . . 8 (𝐵 ∈ dom vol → (vol‘𝐵) ∈ (0[,]+∞))
2017, 19syl 17 . . . . . . 7 ((∀𝑛𝐴 𝐵 ∈ dom vol ∧ 𝑛𝐴) → (vol‘𝐵) ∈ (0[,]+∞))
212, 20sylan 580 . . . . . 6 ((((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) ∧ 𝑛𝐴) → (vol‘𝐵) ∈ (0[,]+∞))
22 0xr 11305 . . . . . . . 8 0 ∈ ℝ*
23 pnfxr 11312 . . . . . . . 8 +∞ ∈ ℝ*
24 elicc1 13427 . . . . . . . 8 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((vol‘𝐵) ∈ (0[,]+∞) ↔ ((vol‘𝐵) ∈ ℝ* ∧ 0 ≤ (vol‘𝐵) ∧ (vol‘𝐵) ≤ +∞)))
2522, 23, 24mp2an 692 . . . . . . 7 ((vol‘𝐵) ∈ (0[,]+∞) ↔ ((vol‘𝐵) ∈ ℝ* ∧ 0 ≤ (vol‘𝐵) ∧ (vol‘𝐵) ≤ +∞))
2625simp2bi 1145 . . . . . 6 ((vol‘𝐵) ∈ (0[,]+∞) → 0 ≤ (vol‘𝐵))
2721, 26syl 17 . . . . 5 ((((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) ∧ 𝑛𝐴) → 0 ≤ (vol‘𝐵))
28 ltpnf 13159 . . . . . 6 ((vol‘𝐵) ∈ ℝ → (vol‘𝐵) < +∞)
2916, 28syl 17 . . . . 5 ((((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) ∧ 𝑛𝐴) → (vol‘𝐵) < +∞)
30 0re 11260 . . . . . 6 0 ∈ ℝ
31 elico2 13447 . . . . . 6 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → ((vol‘𝐵) ∈ (0[,)+∞) ↔ ((vol‘𝐵) ∈ ℝ ∧ 0 ≤ (vol‘𝐵) ∧ (vol‘𝐵) < +∞)))
3230, 23, 31mp2an 692 . . . . 5 ((vol‘𝐵) ∈ (0[,)+∞) ↔ ((vol‘𝐵) ∈ ℝ ∧ 0 ≤ (vol‘𝐵) ∧ (vol‘𝐵) < +∞))
3316, 27, 29, 32syl3anbrc 1342 . . . 4 ((((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) ∧ 𝑛𝐴) → (vol‘𝐵) ∈ (0[,)+∞))
349, 15, 1, 33esumpfinvalf 34056 . . 3 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → Σ*𝑛𝐴(vol‘𝐵) = Σ𝑛𝐴 (vol‘𝐵))
358, 34eqtr4d 2777 . 2 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → (vol‘ 𝑛𝐴 𝐵) = Σ*𝑛𝐴(vol‘𝐵))
36 simpr 484 . . . . . . . 8 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → ∃𝑛𝐴 (vol‘𝐵) = +∞)
37 nfv 1911 . . . . . . . . 9 𝑘(vol‘𝐵) = +∞
38 nfcv 2902 . . . . . . . . . . 11 𝑛vol
39 nfcsb1v 3932 . . . . . . . . . . 11 𝑛𝑘 / 𝑛𝐵
4038, 39nffv 6916 . . . . . . . . . 10 𝑛(vol‘𝑘 / 𝑛𝐵)
4140nfeq1 2918 . . . . . . . . 9 𝑛(vol‘𝑘 / 𝑛𝐵) = +∞
42 csbeq1a 3921 . . . . . . . . . 10 (𝑛 = 𝑘𝐵 = 𝑘 / 𝑛𝐵)
4342fveqeq2d 6914 . . . . . . . . 9 (𝑛 = 𝑘 → ((vol‘𝐵) = +∞ ↔ (vol‘𝑘 / 𝑛𝐵) = +∞))
4437, 41, 43cbvrexw 3304 . . . . . . . 8 (∃𝑛𝐴 (vol‘𝐵) = +∞ ↔ ∃𝑘𝐴 (vol‘𝑘 / 𝑛𝐵) = +∞)
4536, 44sylib 218 . . . . . . 7 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → ∃𝑘𝐴 (vol‘𝑘 / 𝑛𝐵) = +∞)
4639nfel1 2919 . . . . . . . . . . . . . 14 𝑛𝑘 / 𝑛𝐵 ∈ dom vol
4742eleq1d 2823 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝐵 ∈ dom vol ↔ 𝑘 / 𝑛𝐵 ∈ dom vol))
4846, 47rspc 3609 . . . . . . . . . . . . 13 (𝑘𝐴 → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑘 / 𝑛𝐵 ∈ dom vol))
4948impcom 407 . . . . . . . . . . . 12 ((∀𝑛𝐴 𝐵 ∈ dom vol ∧ 𝑘𝐴) → 𝑘 / 𝑛𝐵 ∈ dom vol)
5049adantll 714 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) ∧ 𝑘𝐴) → 𝑘 / 𝑛𝐵 ∈ dom vol)
51 finiunmbl 25592 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → 𝑛𝐴 𝐵 ∈ dom vol)
5251adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) ∧ 𝑘𝐴) → 𝑛𝐴 𝐵 ∈ dom vol)
53 nfcv 2902 . . . . . . . . . . . . 13 𝑛𝑘
549, 53, 39, 42ssiun2sf 32579 . . . . . . . . . . . 12 (𝑘𝐴𝑘 / 𝑛𝐵 𝑛𝐴 𝐵)
5554adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) ∧ 𝑘𝐴) → 𝑘 / 𝑛𝐵 𝑛𝐴 𝐵)
56 volss 25581 . . . . . . . . . . 11 ((𝑘 / 𝑛𝐵 ∈ dom vol ∧ 𝑛𝐴 𝐵 ∈ dom vol ∧ 𝑘 / 𝑛𝐵 𝑛𝐴 𝐵) → (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵))
5750, 52, 55, 56syl3anc 1370 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) ∧ 𝑘𝐴) → (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵))
58573adantl3 1167 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ 𝑘𝐴) → (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵))
5958adantlr 715 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) ∧ 𝑘𝐴) → (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵))
6059ralrimiva 3143 . . . . . . 7 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → ∀𝑘𝐴 (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵))
61 r19.29r 3113 . . . . . . 7 ((∃𝑘𝐴 (vol‘𝑘 / 𝑛𝐵) = +∞ ∧ ∀𝑘𝐴 (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵)) → ∃𝑘𝐴 ((vol‘𝑘 / 𝑛𝐵) = +∞ ∧ (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵)))
6245, 60, 61syl2anc 584 . . . . . 6 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → ∃𝑘𝐴 ((vol‘𝑘 / 𝑛𝐵) = +∞ ∧ (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵)))
63 breq1 5150 . . . . . . . 8 ((vol‘𝑘 / 𝑛𝐵) = +∞ → ((vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵) ↔ +∞ ≤ (vol‘ 𝑛𝐴 𝐵)))
6463biimpa 476 . . . . . . 7 (((vol‘𝑘 / 𝑛𝐵) = +∞ ∧ (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵)) → +∞ ≤ (vol‘ 𝑛𝐴 𝐵))
6564reximi 3081 . . . . . 6 (∃𝑘𝐴 ((vol‘𝑘 / 𝑛𝐵) = +∞ ∧ (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵)) → ∃𝑘𝐴 +∞ ≤ (vol‘ 𝑛𝐴 𝐵))
6662, 65syl 17 . . . . 5 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → ∃𝑘𝐴 +∞ ≤ (vol‘ 𝑛𝐴 𝐵))
67 rexex 3073 . . . . . 6 (∃𝑘𝐴 +∞ ≤ (vol‘ 𝑛𝐴 𝐵) → ∃𝑘+∞ ≤ (vol‘ 𝑛𝐴 𝐵))
68 19.9v 1980 . . . . . 6 (∃𝑘+∞ ≤ (vol‘ 𝑛𝐴 𝐵) ↔ +∞ ≤ (vol‘ 𝑛𝐴 𝐵))
6967, 68sylib 218 . . . . 5 (∃𝑘𝐴 +∞ ≤ (vol‘ 𝑛𝐴 𝐵) → +∞ ≤ (vol‘ 𝑛𝐴 𝐵))
7066, 69syl 17 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → +∞ ≤ (vol‘ 𝑛𝐴 𝐵))
71 iccssxr 13466 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
7218ffvelcdmi 7102 . . . . . . . . 9 ( 𝑛𝐴 𝐵 ∈ dom vol → (vol‘ 𝑛𝐴 𝐵) ∈ (0[,]+∞))
7371, 72sselid 3992 . . . . . . . 8 ( 𝑛𝐴 𝐵 ∈ dom vol → (vol‘ 𝑛𝐴 𝐵) ∈ ℝ*)
7451, 73syl 17 . . . . . . 7 ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → (vol‘ 𝑛𝐴 𝐵) ∈ ℝ*)
75743adant3 1131 . . . . . 6 ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) → (vol‘ 𝑛𝐴 𝐵) ∈ ℝ*)
7675adantr 480 . . . . 5 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → (vol‘ 𝑛𝐴 𝐵) ∈ ℝ*)
77 xgepnf 13203 . . . . 5 ((vol‘ 𝑛𝐴 𝐵) ∈ ℝ* → (+∞ ≤ (vol‘ 𝑛𝐴 𝐵) ↔ (vol‘ 𝑛𝐴 𝐵) = +∞))
7876, 77syl 17 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → (+∞ ≤ (vol‘ 𝑛𝐴 𝐵) ↔ (vol‘ 𝑛𝐴 𝐵) = +∞))
7970, 78mpbid 232 . . 3 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → (vol‘ 𝑛𝐴 𝐵) = +∞)
80 nfre1 3282 . . . . 5 𝑛𝑛𝐴 (vol‘𝐵) = +∞
8113, 80nfan 1896 . . . 4 𝑛((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞)
82 simpl1 1190 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → 𝐴 ∈ Fin)
83203ad2antl2 1185 . . . . 5 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ 𝑛𝐴) → (vol‘𝐵) ∈ (0[,]+∞))
8483adantlr 715 . . . 4 ((((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) ∧ 𝑛𝐴) → (vol‘𝐵) ∈ (0[,]+∞))
8581, 82, 84, 36esumpinfval 34053 . . 3 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → Σ*𝑛𝐴(vol‘𝐵) = +∞)
8679, 85eqtr4d 2777 . 2 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → (vol‘ 𝑛𝐴 𝐵) = Σ*𝑛𝐴(vol‘𝐵))
87 exmid 894 . . . . 5 (∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ¬ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ)
88 rexnal 3097 . . . . . 6 (∃𝑛𝐴 ¬ (vol‘𝐵) ∈ ℝ ↔ ¬ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ)
8988orbi2i 912 . . . . 5 ((∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ∃𝑛𝐴 ¬ (vol‘𝐵) ∈ ℝ) ↔ (∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ¬ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ))
9087, 89mpbir 231 . . . 4 (∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ∃𝑛𝐴 ¬ (vol‘𝐵) ∈ ℝ)
91 r19.29 3111 . . . . . . 7 ((∀𝑛𝐴 𝐵 ∈ dom vol ∧ ∃𝑛𝐴 ¬ (vol‘𝐵) ∈ ℝ) → ∃𝑛𝐴 (𝐵 ∈ dom vol ∧ ¬ (vol‘𝐵) ∈ ℝ))
92 xrge0nre 13489 . . . . . . . . 9 (((vol‘𝐵) ∈ (0[,]+∞) ∧ ¬ (vol‘𝐵) ∈ ℝ) → (vol‘𝐵) = +∞)
9319, 92sylan 580 . . . . . . . 8 ((𝐵 ∈ dom vol ∧ ¬ (vol‘𝐵) ∈ ℝ) → (vol‘𝐵) = +∞)
9493reximi 3081 . . . . . . 7 (∃𝑛𝐴 (𝐵 ∈ dom vol ∧ ¬ (vol‘𝐵) ∈ ℝ) → ∃𝑛𝐴 (vol‘𝐵) = +∞)
9591, 94syl 17 . . . . . 6 ((∀𝑛𝐴 𝐵 ∈ dom vol ∧ ∃𝑛𝐴 ¬ (vol‘𝐵) ∈ ℝ) → ∃𝑛𝐴 (vol‘𝐵) = +∞)
9695ex 412 . . . . 5 (∀𝑛𝐴 𝐵 ∈ dom vol → (∃𝑛𝐴 ¬ (vol‘𝐵) ∈ ℝ → ∃𝑛𝐴 (vol‘𝐵) = +∞))
9796orim2d 968 . . . 4 (∀𝑛𝐴 𝐵 ∈ dom vol → ((∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ∃𝑛𝐴 ¬ (vol‘𝐵) ∈ ℝ) → (∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ∃𝑛𝐴 (vol‘𝐵) = +∞)))
9890, 97mpi 20 . . 3 (∀𝑛𝐴 𝐵 ∈ dom vol → (∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ∃𝑛𝐴 (vol‘𝐵) = +∞))
99983ad2ant2 1133 . 2 ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) → (∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ∃𝑛𝐴 (vol‘𝐵) = +∞))
10035, 86, 99mpjaodan 960 1 ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) → (vol‘ 𝑛𝐴 𝐵) = Σ*𝑛𝐴(vol‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1536  wex 1775  wcel 2105  wral 3058  wrex 3067  csb 3907  wss 3962   ciun 4995  Disj wdisj 5114   class class class wbr 5147  dom cdm 5688  cfv 6562  (class class class)co 7430  Fincfn 8983  cr 11151  0cc0 11152  +∞cpnf 11289  *cxr 11291   < clt 11292  cle 11293  [,)cico 13385  [,]cicc 13386  Σcsu 15718  volcvol 25511  Σ*cesum 34007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231  ax-mulf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-disj 5115  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-xnn0 12597  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-pi 16104  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-ordt 17547  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-ps 18623  df-tsr 18624  df-plusf 18664  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-submnd 18809  df-grp 18966  df-minusg 18967  df-sbg 18968  df-mulg 19098  df-subg 19153  df-cntz 19347  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-cring 20253  df-subrng 20562  df-subrg 20586  df-abv 20826  df-lmod 20876  df-scaf 20877  df-sra 21189  df-rgmod 21190  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-tmd 24095  df-tgp 24096  df-tsms 24150  df-trg 24183  df-xms 24345  df-ms 24346  df-tms 24347  df-nm 24610  df-ngp 24611  df-nrg 24613  df-nlm 24614  df-ii 24916  df-cncf 24917  df-ovol 25512  df-vol 25513  df-limc 25915  df-dv 25916  df-log 26612  df-esum 34008
This theorem is referenced by:  volmeas  34211
  Copyright terms: Public domain W3C validator