Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  volfiniune Structured version   Visualization version   GIF version

Theorem volfiniune 32098
Description: The Lebesgue measure function is countably additive. This theorem is to volfiniun 24616 what voliune 32097 is to voliun 24623. (Contributed by Thierry Arnoux, 16-Oct-2017.)
Assertion
Ref Expression
volfiniune ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) → (vol‘ 𝑛𝐴 𝐵) = Σ*𝑛𝐴(vol‘𝐵))
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐵(𝑛)

Proof of Theorem volfiniune
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1189 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → 𝐴 ∈ Fin)
2 simpl2 1190 . . . . 5 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → ∀𝑛𝐴 𝐵 ∈ dom vol)
3 simpr 484 . . . . 5 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ)
4 r19.26 3094 . . . . 5 (∀𝑛𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ↔ (∀𝑛𝐴 𝐵 ∈ dom vol ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ))
52, 3, 4sylanbrc 582 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → ∀𝑛𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ))
6 simpl3 1191 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → Disj 𝑛𝐴 𝐵)
7 volfiniun 24616 . . . 4 ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑛𝐴 𝐵) → (vol‘ 𝑛𝐴 𝐵) = Σ𝑛𝐴 (vol‘𝐵))
81, 5, 6, 7syl3anc 1369 . . 3 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → (vol‘ 𝑛𝐴 𝐵) = Σ𝑛𝐴 (vol‘𝐵))
9 nfcv 2906 . . . 4 𝑛𝐴
109nfel1 2922 . . . . . 6 𝑛 𝐴 ∈ Fin
11 nfra1 3142 . . . . . 6 𝑛𝑛𝐴 𝐵 ∈ dom vol
12 nfdisj1 5049 . . . . . 6 𝑛Disj 𝑛𝐴 𝐵
1310, 11, 12nf3an 1905 . . . . 5 𝑛(𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵)
14 nfra1 3142 . . . . 5 𝑛𝑛𝐴 (vol‘𝐵) ∈ ℝ
1513, 14nfan 1903 . . . 4 𝑛((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ)
163r19.21bi 3132 . . . . 5 ((((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) ∧ 𝑛𝐴) → (vol‘𝐵) ∈ ℝ)
17 rspa 3130 . . . . . . . 8 ((∀𝑛𝐴 𝐵 ∈ dom vol ∧ 𝑛𝐴) → 𝐵 ∈ dom vol)
18 volf 24598 . . . . . . . . 9 vol:dom vol⟶(0[,]+∞)
1918ffvelrni 6942 . . . . . . . 8 (𝐵 ∈ dom vol → (vol‘𝐵) ∈ (0[,]+∞))
2017, 19syl 17 . . . . . . 7 ((∀𝑛𝐴 𝐵 ∈ dom vol ∧ 𝑛𝐴) → (vol‘𝐵) ∈ (0[,]+∞))
212, 20sylan 579 . . . . . 6 ((((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) ∧ 𝑛𝐴) → (vol‘𝐵) ∈ (0[,]+∞))
22 0xr 10953 . . . . . . . 8 0 ∈ ℝ*
23 pnfxr 10960 . . . . . . . 8 +∞ ∈ ℝ*
24 elicc1 13052 . . . . . . . 8 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((vol‘𝐵) ∈ (0[,]+∞) ↔ ((vol‘𝐵) ∈ ℝ* ∧ 0 ≤ (vol‘𝐵) ∧ (vol‘𝐵) ≤ +∞)))
2522, 23, 24mp2an 688 . . . . . . 7 ((vol‘𝐵) ∈ (0[,]+∞) ↔ ((vol‘𝐵) ∈ ℝ* ∧ 0 ≤ (vol‘𝐵) ∧ (vol‘𝐵) ≤ +∞))
2625simp2bi 1144 . . . . . 6 ((vol‘𝐵) ∈ (0[,]+∞) → 0 ≤ (vol‘𝐵))
2721, 26syl 17 . . . . 5 ((((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) ∧ 𝑛𝐴) → 0 ≤ (vol‘𝐵))
28 ltpnf 12785 . . . . . 6 ((vol‘𝐵) ∈ ℝ → (vol‘𝐵) < +∞)
2916, 28syl 17 . . . . 5 ((((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) ∧ 𝑛𝐴) → (vol‘𝐵) < +∞)
30 0re 10908 . . . . . 6 0 ∈ ℝ
31 elico2 13072 . . . . . 6 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → ((vol‘𝐵) ∈ (0[,)+∞) ↔ ((vol‘𝐵) ∈ ℝ ∧ 0 ≤ (vol‘𝐵) ∧ (vol‘𝐵) < +∞)))
3230, 23, 31mp2an 688 . . . . 5 ((vol‘𝐵) ∈ (0[,)+∞) ↔ ((vol‘𝐵) ∈ ℝ ∧ 0 ≤ (vol‘𝐵) ∧ (vol‘𝐵) < +∞))
3316, 27, 29, 32syl3anbrc 1341 . . . 4 ((((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) ∧ 𝑛𝐴) → (vol‘𝐵) ∈ (0[,)+∞))
349, 15, 1, 33esumpfinvalf 31944 . . 3 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → Σ*𝑛𝐴(vol‘𝐵) = Σ𝑛𝐴 (vol‘𝐵))
358, 34eqtr4d 2781 . 2 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → (vol‘ 𝑛𝐴 𝐵) = Σ*𝑛𝐴(vol‘𝐵))
36 simpr 484 . . . . . . . 8 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → ∃𝑛𝐴 (vol‘𝐵) = +∞)
37 nfv 1918 . . . . . . . . 9 𝑘(vol‘𝐵) = +∞
38 nfcv 2906 . . . . . . . . . . 11 𝑛vol
39 nfcsb1v 3853 . . . . . . . . . . 11 𝑛𝑘 / 𝑛𝐵
4038, 39nffv 6766 . . . . . . . . . 10 𝑛(vol‘𝑘 / 𝑛𝐵)
4140nfeq1 2921 . . . . . . . . 9 𝑛(vol‘𝑘 / 𝑛𝐵) = +∞
42 csbeq1a 3842 . . . . . . . . . 10 (𝑛 = 𝑘𝐵 = 𝑘 / 𝑛𝐵)
4342fveqeq2d 6764 . . . . . . . . 9 (𝑛 = 𝑘 → ((vol‘𝐵) = +∞ ↔ (vol‘𝑘 / 𝑛𝐵) = +∞))
4437, 41, 43cbvrexw 3364 . . . . . . . 8 (∃𝑛𝐴 (vol‘𝐵) = +∞ ↔ ∃𝑘𝐴 (vol‘𝑘 / 𝑛𝐵) = +∞)
4536, 44sylib 217 . . . . . . 7 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → ∃𝑘𝐴 (vol‘𝑘 / 𝑛𝐵) = +∞)
4639nfel1 2922 . . . . . . . . . . . . . 14 𝑛𝑘 / 𝑛𝐵 ∈ dom vol
4742eleq1d 2823 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝐵 ∈ dom vol ↔ 𝑘 / 𝑛𝐵 ∈ dom vol))
4846, 47rspc 3539 . . . . . . . . . . . . 13 (𝑘𝐴 → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑘 / 𝑛𝐵 ∈ dom vol))
4948impcom 407 . . . . . . . . . . . 12 ((∀𝑛𝐴 𝐵 ∈ dom vol ∧ 𝑘𝐴) → 𝑘 / 𝑛𝐵 ∈ dom vol)
5049adantll 710 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) ∧ 𝑘𝐴) → 𝑘 / 𝑛𝐵 ∈ dom vol)
51 finiunmbl 24613 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → 𝑛𝐴 𝐵 ∈ dom vol)
5251adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) ∧ 𝑘𝐴) → 𝑛𝐴 𝐵 ∈ dom vol)
53 nfcv 2906 . . . . . . . . . . . . 13 𝑛𝑘
549, 53, 39, 42ssiun2sf 30800 . . . . . . . . . . . 12 (𝑘𝐴𝑘 / 𝑛𝐵 𝑛𝐴 𝐵)
5554adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) ∧ 𝑘𝐴) → 𝑘 / 𝑛𝐵 𝑛𝐴 𝐵)
56 volss 24602 . . . . . . . . . . 11 ((𝑘 / 𝑛𝐵 ∈ dom vol ∧ 𝑛𝐴 𝐵 ∈ dom vol ∧ 𝑘 / 𝑛𝐵 𝑛𝐴 𝐵) → (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵))
5750, 52, 55, 56syl3anc 1369 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) ∧ 𝑘𝐴) → (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵))
58573adantl3 1166 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ 𝑘𝐴) → (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵))
5958adantlr 711 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) ∧ 𝑘𝐴) → (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵))
6059ralrimiva 3107 . . . . . . 7 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → ∀𝑘𝐴 (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵))
61 r19.29r 3184 . . . . . . 7 ((∃𝑘𝐴 (vol‘𝑘 / 𝑛𝐵) = +∞ ∧ ∀𝑘𝐴 (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵)) → ∃𝑘𝐴 ((vol‘𝑘 / 𝑛𝐵) = +∞ ∧ (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵)))
6245, 60, 61syl2anc 583 . . . . . 6 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → ∃𝑘𝐴 ((vol‘𝑘 / 𝑛𝐵) = +∞ ∧ (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵)))
63 breq1 5073 . . . . . . . 8 ((vol‘𝑘 / 𝑛𝐵) = +∞ → ((vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵) ↔ +∞ ≤ (vol‘ 𝑛𝐴 𝐵)))
6463biimpa 476 . . . . . . 7 (((vol‘𝑘 / 𝑛𝐵) = +∞ ∧ (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵)) → +∞ ≤ (vol‘ 𝑛𝐴 𝐵))
6564reximi 3174 . . . . . 6 (∃𝑘𝐴 ((vol‘𝑘 / 𝑛𝐵) = +∞ ∧ (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵)) → ∃𝑘𝐴 +∞ ≤ (vol‘ 𝑛𝐴 𝐵))
6662, 65syl 17 . . . . 5 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → ∃𝑘𝐴 +∞ ≤ (vol‘ 𝑛𝐴 𝐵))
67 rexex 3167 . . . . . 6 (∃𝑘𝐴 +∞ ≤ (vol‘ 𝑛𝐴 𝐵) → ∃𝑘+∞ ≤ (vol‘ 𝑛𝐴 𝐵))
68 19.9v 1988 . . . . . 6 (∃𝑘+∞ ≤ (vol‘ 𝑛𝐴 𝐵) ↔ +∞ ≤ (vol‘ 𝑛𝐴 𝐵))
6967, 68sylib 217 . . . . 5 (∃𝑘𝐴 +∞ ≤ (vol‘ 𝑛𝐴 𝐵) → +∞ ≤ (vol‘ 𝑛𝐴 𝐵))
7066, 69syl 17 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → +∞ ≤ (vol‘ 𝑛𝐴 𝐵))
71 iccssxr 13091 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
7218ffvelrni 6942 . . . . . . . . 9 ( 𝑛𝐴 𝐵 ∈ dom vol → (vol‘ 𝑛𝐴 𝐵) ∈ (0[,]+∞))
7371, 72sselid 3915 . . . . . . . 8 ( 𝑛𝐴 𝐵 ∈ dom vol → (vol‘ 𝑛𝐴 𝐵) ∈ ℝ*)
7451, 73syl 17 . . . . . . 7 ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → (vol‘ 𝑛𝐴 𝐵) ∈ ℝ*)
75743adant3 1130 . . . . . 6 ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) → (vol‘ 𝑛𝐴 𝐵) ∈ ℝ*)
7675adantr 480 . . . . 5 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → (vol‘ 𝑛𝐴 𝐵) ∈ ℝ*)
77 xgepnf 12828 . . . . 5 ((vol‘ 𝑛𝐴 𝐵) ∈ ℝ* → (+∞ ≤ (vol‘ 𝑛𝐴 𝐵) ↔ (vol‘ 𝑛𝐴 𝐵) = +∞))
7876, 77syl 17 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → (+∞ ≤ (vol‘ 𝑛𝐴 𝐵) ↔ (vol‘ 𝑛𝐴 𝐵) = +∞))
7970, 78mpbid 231 . . 3 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → (vol‘ 𝑛𝐴 𝐵) = +∞)
80 nfre1 3234 . . . . 5 𝑛𝑛𝐴 (vol‘𝐵) = +∞
8113, 80nfan 1903 . . . 4 𝑛((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞)
82 simpl1 1189 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → 𝐴 ∈ Fin)
83203ad2antl2 1184 . . . . 5 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ 𝑛𝐴) → (vol‘𝐵) ∈ (0[,]+∞))
8483adantlr 711 . . . 4 ((((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) ∧ 𝑛𝐴) → (vol‘𝐵) ∈ (0[,]+∞))
8581, 82, 84, 36esumpinfval 31941 . . 3 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → Σ*𝑛𝐴(vol‘𝐵) = +∞)
8679, 85eqtr4d 2781 . 2 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → (vol‘ 𝑛𝐴 𝐵) = Σ*𝑛𝐴(vol‘𝐵))
87 exmid 891 . . . . 5 (∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ¬ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ)
88 rexnal 3165 . . . . . 6 (∃𝑛𝐴 ¬ (vol‘𝐵) ∈ ℝ ↔ ¬ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ)
8988orbi2i 909 . . . . 5 ((∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ∃𝑛𝐴 ¬ (vol‘𝐵) ∈ ℝ) ↔ (∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ¬ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ))
9087, 89mpbir 230 . . . 4 (∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ∃𝑛𝐴 ¬ (vol‘𝐵) ∈ ℝ)
91 r19.29 3183 . . . . . . 7 ((∀𝑛𝐴 𝐵 ∈ dom vol ∧ ∃𝑛𝐴 ¬ (vol‘𝐵) ∈ ℝ) → ∃𝑛𝐴 (𝐵 ∈ dom vol ∧ ¬ (vol‘𝐵) ∈ ℝ))
92 xrge0nre 13114 . . . . . . . . 9 (((vol‘𝐵) ∈ (0[,]+∞) ∧ ¬ (vol‘𝐵) ∈ ℝ) → (vol‘𝐵) = +∞)
9319, 92sylan 579 . . . . . . . 8 ((𝐵 ∈ dom vol ∧ ¬ (vol‘𝐵) ∈ ℝ) → (vol‘𝐵) = +∞)
9493reximi 3174 . . . . . . 7 (∃𝑛𝐴 (𝐵 ∈ dom vol ∧ ¬ (vol‘𝐵) ∈ ℝ) → ∃𝑛𝐴 (vol‘𝐵) = +∞)
9591, 94syl 17 . . . . . 6 ((∀𝑛𝐴 𝐵 ∈ dom vol ∧ ∃𝑛𝐴 ¬ (vol‘𝐵) ∈ ℝ) → ∃𝑛𝐴 (vol‘𝐵) = +∞)
9695ex 412 . . . . 5 (∀𝑛𝐴 𝐵 ∈ dom vol → (∃𝑛𝐴 ¬ (vol‘𝐵) ∈ ℝ → ∃𝑛𝐴 (vol‘𝐵) = +∞))
9796orim2d 963 . . . 4 (∀𝑛𝐴 𝐵 ∈ dom vol → ((∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ∃𝑛𝐴 ¬ (vol‘𝐵) ∈ ℝ) → (∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ∃𝑛𝐴 (vol‘𝐵) = +∞)))
9890, 97mpi 20 . . 3 (∀𝑛𝐴 𝐵 ∈ dom vol → (∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ∃𝑛𝐴 (vol‘𝐵) = +∞))
99983ad2ant2 1132 . 2 ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) → (∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ∃𝑛𝐴 (vol‘𝐵) = +∞))
10035, 86, 99mpjaodan 955 1 ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) → (vol‘ 𝑛𝐴 𝐵) = Σ*𝑛𝐴(vol‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wral 3063  wrex 3064  csb 3828  wss 3883   ciun 4921  Disj wdisj 5035   class class class wbr 5070  dom cdm 5580  cfv 6418  (class class class)co 7255  Fincfn 8691  cr 10801  0cc0 10802  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  [,)cico 13010  [,]cicc 13011  Σcsu 15325  volcvol 24532  Σ*cesum 31895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-ordt 17129  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-ps 18199  df-tsr 18200  df-plusf 18240  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-subrg 19937  df-abv 19992  df-lmod 20040  df-scaf 20041  df-sra 20349  df-rgmod 20350  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-tmd 23131  df-tgp 23132  df-tsms 23186  df-trg 23219  df-xms 23381  df-ms 23382  df-tms 23383  df-nm 23644  df-ngp 23645  df-nrg 23647  df-nlm 23648  df-ii 23946  df-cncf 23947  df-ovol 24533  df-vol 24534  df-limc 24935  df-dv 24936  df-log 25617  df-esum 31896
This theorem is referenced by:  volmeas  32099
  Copyright terms: Public domain W3C validator