Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  volfiniune Structured version   Visualization version   GIF version

Theorem volfiniune 34193
Description: The Lebesgue measure function is countably additive. This theorem is to volfiniun 25424 what voliune 34192 is to voliun 25431. (Contributed by Thierry Arnoux, 16-Oct-2017.)
Assertion
Ref Expression
volfiniune ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) → (vol‘ 𝑛𝐴 𝐵) = Σ*𝑛𝐴(vol‘𝐵))
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐵(𝑛)

Proof of Theorem volfiniune
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → 𝐴 ∈ Fin)
2 simpl2 1193 . . . . 5 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → ∀𝑛𝐴 𝐵 ∈ dom vol)
3 simpr 484 . . . . 5 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ)
4 r19.26 3091 . . . . 5 (∀𝑛𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ↔ (∀𝑛𝐴 𝐵 ∈ dom vol ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ))
52, 3, 4sylanbrc 583 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → ∀𝑛𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ))
6 simpl3 1194 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → Disj 𝑛𝐴 𝐵)
7 volfiniun 25424 . . . 4 ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑛𝐴 𝐵) → (vol‘ 𝑛𝐴 𝐵) = Σ𝑛𝐴 (vol‘𝐵))
81, 5, 6, 7syl3anc 1373 . . 3 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → (vol‘ 𝑛𝐴 𝐵) = Σ𝑛𝐴 (vol‘𝐵))
9 nfcv 2891 . . . 4 𝑛𝐴
109nfel1 2908 . . . . . 6 𝑛 𝐴 ∈ Fin
11 nfra1 3259 . . . . . 6 𝑛𝑛𝐴 𝐵 ∈ dom vol
12 nfdisj1 5083 . . . . . 6 𝑛Disj 𝑛𝐴 𝐵
1310, 11, 12nf3an 1901 . . . . 5 𝑛(𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵)
14 nfra1 3259 . . . . 5 𝑛𝑛𝐴 (vol‘𝐵) ∈ ℝ
1513, 14nfan 1899 . . . 4 𝑛((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ)
163r19.21bi 3227 . . . . 5 ((((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) ∧ 𝑛𝐴) → (vol‘𝐵) ∈ ℝ)
17 rspa 3224 . . . . . . . 8 ((∀𝑛𝐴 𝐵 ∈ dom vol ∧ 𝑛𝐴) → 𝐵 ∈ dom vol)
18 volf 25406 . . . . . . . . 9 vol:dom vol⟶(0[,]+∞)
1918ffvelcdmi 7037 . . . . . . . 8 (𝐵 ∈ dom vol → (vol‘𝐵) ∈ (0[,]+∞))
2017, 19syl 17 . . . . . . 7 ((∀𝑛𝐴 𝐵 ∈ dom vol ∧ 𝑛𝐴) → (vol‘𝐵) ∈ (0[,]+∞))
212, 20sylan 580 . . . . . 6 ((((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) ∧ 𝑛𝐴) → (vol‘𝐵) ∈ (0[,]+∞))
22 0xr 11197 . . . . . . . 8 0 ∈ ℝ*
23 pnfxr 11204 . . . . . . . 8 +∞ ∈ ℝ*
24 elicc1 13326 . . . . . . . 8 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((vol‘𝐵) ∈ (0[,]+∞) ↔ ((vol‘𝐵) ∈ ℝ* ∧ 0 ≤ (vol‘𝐵) ∧ (vol‘𝐵) ≤ +∞)))
2522, 23, 24mp2an 692 . . . . . . 7 ((vol‘𝐵) ∈ (0[,]+∞) ↔ ((vol‘𝐵) ∈ ℝ* ∧ 0 ≤ (vol‘𝐵) ∧ (vol‘𝐵) ≤ +∞))
2625simp2bi 1146 . . . . . 6 ((vol‘𝐵) ∈ (0[,]+∞) → 0 ≤ (vol‘𝐵))
2721, 26syl 17 . . . . 5 ((((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) ∧ 𝑛𝐴) → 0 ≤ (vol‘𝐵))
28 ltpnf 13056 . . . . . 6 ((vol‘𝐵) ∈ ℝ → (vol‘𝐵) < +∞)
2916, 28syl 17 . . . . 5 ((((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) ∧ 𝑛𝐴) → (vol‘𝐵) < +∞)
30 0re 11152 . . . . . 6 0 ∈ ℝ
31 elico2 13347 . . . . . 6 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → ((vol‘𝐵) ∈ (0[,)+∞) ↔ ((vol‘𝐵) ∈ ℝ ∧ 0 ≤ (vol‘𝐵) ∧ (vol‘𝐵) < +∞)))
3230, 23, 31mp2an 692 . . . . 5 ((vol‘𝐵) ∈ (0[,)+∞) ↔ ((vol‘𝐵) ∈ ℝ ∧ 0 ≤ (vol‘𝐵) ∧ (vol‘𝐵) < +∞))
3316, 27, 29, 32syl3anbrc 1344 . . . 4 ((((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) ∧ 𝑛𝐴) → (vol‘𝐵) ∈ (0[,)+∞))
349, 15, 1, 33esumpfinvalf 34039 . . 3 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → Σ*𝑛𝐴(vol‘𝐵) = Σ𝑛𝐴 (vol‘𝐵))
358, 34eqtr4d 2767 . 2 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → (vol‘ 𝑛𝐴 𝐵) = Σ*𝑛𝐴(vol‘𝐵))
36 simpr 484 . . . . . . . 8 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → ∃𝑛𝐴 (vol‘𝐵) = +∞)
37 nfv 1914 . . . . . . . . 9 𝑘(vol‘𝐵) = +∞
38 nfcv 2891 . . . . . . . . . . 11 𝑛vol
39 nfcsb1v 3883 . . . . . . . . . . 11 𝑛𝑘 / 𝑛𝐵
4038, 39nffv 6850 . . . . . . . . . 10 𝑛(vol‘𝑘 / 𝑛𝐵)
4140nfeq1 2907 . . . . . . . . 9 𝑛(vol‘𝑘 / 𝑛𝐵) = +∞
42 csbeq1a 3873 . . . . . . . . . 10 (𝑛 = 𝑘𝐵 = 𝑘 / 𝑛𝐵)
4342fveqeq2d 6848 . . . . . . . . 9 (𝑛 = 𝑘 → ((vol‘𝐵) = +∞ ↔ (vol‘𝑘 / 𝑛𝐵) = +∞))
4437, 41, 43cbvrexw 3279 . . . . . . . 8 (∃𝑛𝐴 (vol‘𝐵) = +∞ ↔ ∃𝑘𝐴 (vol‘𝑘 / 𝑛𝐵) = +∞)
4536, 44sylib 218 . . . . . . 7 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → ∃𝑘𝐴 (vol‘𝑘 / 𝑛𝐵) = +∞)
4639nfel1 2908 . . . . . . . . . . . . . 14 𝑛𝑘 / 𝑛𝐵 ∈ dom vol
4742eleq1d 2813 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝐵 ∈ dom vol ↔ 𝑘 / 𝑛𝐵 ∈ dom vol))
4846, 47rspc 3573 . . . . . . . . . . . . 13 (𝑘𝐴 → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑘 / 𝑛𝐵 ∈ dom vol))
4948impcom 407 . . . . . . . . . . . 12 ((∀𝑛𝐴 𝐵 ∈ dom vol ∧ 𝑘𝐴) → 𝑘 / 𝑛𝐵 ∈ dom vol)
5049adantll 714 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) ∧ 𝑘𝐴) → 𝑘 / 𝑛𝐵 ∈ dom vol)
51 finiunmbl 25421 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → 𝑛𝐴 𝐵 ∈ dom vol)
5251adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) ∧ 𝑘𝐴) → 𝑛𝐴 𝐵 ∈ dom vol)
53 nfcv 2891 . . . . . . . . . . . . 13 𝑛𝑘
549, 53, 39, 42ssiun2sf 32461 . . . . . . . . . . . 12 (𝑘𝐴𝑘 / 𝑛𝐵 𝑛𝐴 𝐵)
5554adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) ∧ 𝑘𝐴) → 𝑘 / 𝑛𝐵 𝑛𝐴 𝐵)
56 volss 25410 . . . . . . . . . . 11 ((𝑘 / 𝑛𝐵 ∈ dom vol ∧ 𝑛𝐴 𝐵 ∈ dom vol ∧ 𝑘 / 𝑛𝐵 𝑛𝐴 𝐵) → (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵))
5750, 52, 55, 56syl3anc 1373 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) ∧ 𝑘𝐴) → (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵))
58573adantl3 1169 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ 𝑘𝐴) → (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵))
5958adantlr 715 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) ∧ 𝑘𝐴) → (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵))
6059ralrimiva 3125 . . . . . . 7 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → ∀𝑘𝐴 (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵))
61 r19.29r 3096 . . . . . . 7 ((∃𝑘𝐴 (vol‘𝑘 / 𝑛𝐵) = +∞ ∧ ∀𝑘𝐴 (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵)) → ∃𝑘𝐴 ((vol‘𝑘 / 𝑛𝐵) = +∞ ∧ (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵)))
6245, 60, 61syl2anc 584 . . . . . 6 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → ∃𝑘𝐴 ((vol‘𝑘 / 𝑛𝐵) = +∞ ∧ (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵)))
63 breq1 5105 . . . . . . . 8 ((vol‘𝑘 / 𝑛𝐵) = +∞ → ((vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵) ↔ +∞ ≤ (vol‘ 𝑛𝐴 𝐵)))
6463biimpa 476 . . . . . . 7 (((vol‘𝑘 / 𝑛𝐵) = +∞ ∧ (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵)) → +∞ ≤ (vol‘ 𝑛𝐴 𝐵))
6564reximi 3067 . . . . . 6 (∃𝑘𝐴 ((vol‘𝑘 / 𝑛𝐵) = +∞ ∧ (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵)) → ∃𝑘𝐴 +∞ ≤ (vol‘ 𝑛𝐴 𝐵))
6662, 65syl 17 . . . . 5 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → ∃𝑘𝐴 +∞ ≤ (vol‘ 𝑛𝐴 𝐵))
67 rexex 3059 . . . . . 6 (∃𝑘𝐴 +∞ ≤ (vol‘ 𝑛𝐴 𝐵) → ∃𝑘+∞ ≤ (vol‘ 𝑛𝐴 𝐵))
68 19.9v 1984 . . . . . 6 (∃𝑘+∞ ≤ (vol‘ 𝑛𝐴 𝐵) ↔ +∞ ≤ (vol‘ 𝑛𝐴 𝐵))
6967, 68sylib 218 . . . . 5 (∃𝑘𝐴 +∞ ≤ (vol‘ 𝑛𝐴 𝐵) → +∞ ≤ (vol‘ 𝑛𝐴 𝐵))
7066, 69syl 17 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → +∞ ≤ (vol‘ 𝑛𝐴 𝐵))
71 iccssxr 13367 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
7218ffvelcdmi 7037 . . . . . . . . 9 ( 𝑛𝐴 𝐵 ∈ dom vol → (vol‘ 𝑛𝐴 𝐵) ∈ (0[,]+∞))
7371, 72sselid 3941 . . . . . . . 8 ( 𝑛𝐴 𝐵 ∈ dom vol → (vol‘ 𝑛𝐴 𝐵) ∈ ℝ*)
7451, 73syl 17 . . . . . . 7 ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → (vol‘ 𝑛𝐴 𝐵) ∈ ℝ*)
75743adant3 1132 . . . . . 6 ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) → (vol‘ 𝑛𝐴 𝐵) ∈ ℝ*)
7675adantr 480 . . . . 5 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → (vol‘ 𝑛𝐴 𝐵) ∈ ℝ*)
77 xgepnf 13101 . . . . 5 ((vol‘ 𝑛𝐴 𝐵) ∈ ℝ* → (+∞ ≤ (vol‘ 𝑛𝐴 𝐵) ↔ (vol‘ 𝑛𝐴 𝐵) = +∞))
7876, 77syl 17 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → (+∞ ≤ (vol‘ 𝑛𝐴 𝐵) ↔ (vol‘ 𝑛𝐴 𝐵) = +∞))
7970, 78mpbid 232 . . 3 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → (vol‘ 𝑛𝐴 𝐵) = +∞)
80 nfre1 3260 . . . . 5 𝑛𝑛𝐴 (vol‘𝐵) = +∞
8113, 80nfan 1899 . . . 4 𝑛((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞)
82 simpl1 1192 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → 𝐴 ∈ Fin)
83203ad2antl2 1187 . . . . 5 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ 𝑛𝐴) → (vol‘𝐵) ∈ (0[,]+∞))
8483adantlr 715 . . . 4 ((((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) ∧ 𝑛𝐴) → (vol‘𝐵) ∈ (0[,]+∞))
8581, 82, 84, 36esumpinfval 34036 . . 3 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → Σ*𝑛𝐴(vol‘𝐵) = +∞)
8679, 85eqtr4d 2767 . 2 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → (vol‘ 𝑛𝐴 𝐵) = Σ*𝑛𝐴(vol‘𝐵))
87 exmid 894 . . . . 5 (∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ¬ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ)
88 rexnal 3082 . . . . . 6 (∃𝑛𝐴 ¬ (vol‘𝐵) ∈ ℝ ↔ ¬ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ)
8988orbi2i 912 . . . . 5 ((∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ∃𝑛𝐴 ¬ (vol‘𝐵) ∈ ℝ) ↔ (∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ¬ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ))
9087, 89mpbir 231 . . . 4 (∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ∃𝑛𝐴 ¬ (vol‘𝐵) ∈ ℝ)
91 r19.29 3094 . . . . . . 7 ((∀𝑛𝐴 𝐵 ∈ dom vol ∧ ∃𝑛𝐴 ¬ (vol‘𝐵) ∈ ℝ) → ∃𝑛𝐴 (𝐵 ∈ dom vol ∧ ¬ (vol‘𝐵) ∈ ℝ))
92 xrge0nre 13390 . . . . . . . . 9 (((vol‘𝐵) ∈ (0[,]+∞) ∧ ¬ (vol‘𝐵) ∈ ℝ) → (vol‘𝐵) = +∞)
9319, 92sylan 580 . . . . . . . 8 ((𝐵 ∈ dom vol ∧ ¬ (vol‘𝐵) ∈ ℝ) → (vol‘𝐵) = +∞)
9493reximi 3067 . . . . . . 7 (∃𝑛𝐴 (𝐵 ∈ dom vol ∧ ¬ (vol‘𝐵) ∈ ℝ) → ∃𝑛𝐴 (vol‘𝐵) = +∞)
9591, 94syl 17 . . . . . 6 ((∀𝑛𝐴 𝐵 ∈ dom vol ∧ ∃𝑛𝐴 ¬ (vol‘𝐵) ∈ ℝ) → ∃𝑛𝐴 (vol‘𝐵) = +∞)
9695ex 412 . . . . 5 (∀𝑛𝐴 𝐵 ∈ dom vol → (∃𝑛𝐴 ¬ (vol‘𝐵) ∈ ℝ → ∃𝑛𝐴 (vol‘𝐵) = +∞))
9796orim2d 968 . . . 4 (∀𝑛𝐴 𝐵 ∈ dom vol → ((∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ∃𝑛𝐴 ¬ (vol‘𝐵) ∈ ℝ) → (∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ∃𝑛𝐴 (vol‘𝐵) = +∞)))
9890, 97mpi 20 . . 3 (∀𝑛𝐴 𝐵 ∈ dom vol → (∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ∃𝑛𝐴 (vol‘𝐵) = +∞))
99983ad2ant2 1134 . 2 ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) → (∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ∃𝑛𝐴 (vol‘𝐵) = +∞))
10035, 86, 99mpjaodan 960 1 ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) → (vol‘ 𝑛𝐴 𝐵) = Σ*𝑛𝐴(vol‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  csb 3859  wss 3911   ciun 4951  Disj wdisj 5069   class class class wbr 5102  dom cdm 5631  cfv 6499  (class class class)co 7369  Fincfn 8895  cr 11043  0cc0 11044  +∞cpnf 11181  *cxr 11183   < clt 11184  cle 11185  [,)cico 13284  [,]cicc 13285  Σcsu 15628  volcvol 25340  Σ*cesum 33990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-ordt 17440  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-ps 18501  df-tsr 18502  df-plusf 18542  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-cntz 19225  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-subrng 20431  df-subrg 20455  df-abv 20694  df-lmod 20744  df-scaf 20745  df-sra 21056  df-rgmod 21057  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-tmd 23935  df-tgp 23936  df-tsms 23990  df-trg 24023  df-xms 24184  df-ms 24185  df-tms 24186  df-nm 24446  df-ngp 24447  df-nrg 24449  df-nlm 24450  df-ii 24746  df-cncf 24747  df-ovol 25341  df-vol 25342  df-limc 25743  df-dv 25744  df-log 26441  df-esum 33991
This theorem is referenced by:  volmeas  34194
  Copyright terms: Public domain W3C validator