Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  volfiniune Structured version   Visualization version   GIF version

Theorem volfiniune 31516
Description: The Lebesgue measure function is countably additive. This theorem is to volfiniun 24149 what voliune 31515 is to voliun 24156. (Contributed by Thierry Arnoux, 16-Oct-2017.)
Assertion
Ref Expression
volfiniune ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) → (vol‘ 𝑛𝐴 𝐵) = Σ*𝑛𝐴(vol‘𝐵))
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐵(𝑛)

Proof of Theorem volfiniune
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1188 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → 𝐴 ∈ Fin)
2 simpl2 1189 . . . . 5 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → ∀𝑛𝐴 𝐵 ∈ dom vol)
3 simpr 488 . . . . 5 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ)
4 r19.26 3165 . . . . 5 (∀𝑛𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ↔ (∀𝑛𝐴 𝐵 ∈ dom vol ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ))
52, 3, 4sylanbrc 586 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → ∀𝑛𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ))
6 simpl3 1190 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → Disj 𝑛𝐴 𝐵)
7 volfiniun 24149 . . . 4 ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑛𝐴 𝐵) → (vol‘ 𝑛𝐴 𝐵) = Σ𝑛𝐴 (vol‘𝐵))
81, 5, 6, 7syl3anc 1368 . . 3 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → (vol‘ 𝑛𝐴 𝐵) = Σ𝑛𝐴 (vol‘𝐵))
9 nfcv 2982 . . . 4 𝑛𝐴
109nfel1 2998 . . . . . 6 𝑛 𝐴 ∈ Fin
11 nfra1 3214 . . . . . 6 𝑛𝑛𝐴 𝐵 ∈ dom vol
12 nfdisj1 5032 . . . . . 6 𝑛Disj 𝑛𝐴 𝐵
1310, 11, 12nf3an 1903 . . . . 5 𝑛(𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵)
14 nfra1 3214 . . . . 5 𝑛𝑛𝐴 (vol‘𝐵) ∈ ℝ
1513, 14nfan 1901 . . . 4 𝑛((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ)
163r19.21bi 3203 . . . . 5 ((((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) ∧ 𝑛𝐴) → (vol‘𝐵) ∈ ℝ)
17 rspa 3201 . . . . . . . 8 ((∀𝑛𝐴 𝐵 ∈ dom vol ∧ 𝑛𝐴) → 𝐵 ∈ dom vol)
18 volf 24131 . . . . . . . . 9 vol:dom vol⟶(0[,]+∞)
1918ffvelrni 6839 . . . . . . . 8 (𝐵 ∈ dom vol → (vol‘𝐵) ∈ (0[,]+∞))
2017, 19syl 17 . . . . . . 7 ((∀𝑛𝐴 𝐵 ∈ dom vol ∧ 𝑛𝐴) → (vol‘𝐵) ∈ (0[,]+∞))
212, 20sylan 583 . . . . . 6 ((((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) ∧ 𝑛𝐴) → (vol‘𝐵) ∈ (0[,]+∞))
22 0xr 10682 . . . . . . . 8 0 ∈ ℝ*
23 pnfxr 10689 . . . . . . . 8 +∞ ∈ ℝ*
24 elicc1 12777 . . . . . . . 8 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((vol‘𝐵) ∈ (0[,]+∞) ↔ ((vol‘𝐵) ∈ ℝ* ∧ 0 ≤ (vol‘𝐵) ∧ (vol‘𝐵) ≤ +∞)))
2522, 23, 24mp2an 691 . . . . . . 7 ((vol‘𝐵) ∈ (0[,]+∞) ↔ ((vol‘𝐵) ∈ ℝ* ∧ 0 ≤ (vol‘𝐵) ∧ (vol‘𝐵) ≤ +∞))
2625simp2bi 1143 . . . . . 6 ((vol‘𝐵) ∈ (0[,]+∞) → 0 ≤ (vol‘𝐵))
2721, 26syl 17 . . . . 5 ((((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) ∧ 𝑛𝐴) → 0 ≤ (vol‘𝐵))
28 ltpnf 12510 . . . . . 6 ((vol‘𝐵) ∈ ℝ → (vol‘𝐵) < +∞)
2916, 28syl 17 . . . . 5 ((((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) ∧ 𝑛𝐴) → (vol‘𝐵) < +∞)
30 0re 10637 . . . . . 6 0 ∈ ℝ
31 elico2 12796 . . . . . 6 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → ((vol‘𝐵) ∈ (0[,)+∞) ↔ ((vol‘𝐵) ∈ ℝ ∧ 0 ≤ (vol‘𝐵) ∧ (vol‘𝐵) < +∞)))
3230, 23, 31mp2an 691 . . . . 5 ((vol‘𝐵) ∈ (0[,)+∞) ↔ ((vol‘𝐵) ∈ ℝ ∧ 0 ≤ (vol‘𝐵) ∧ (vol‘𝐵) < +∞))
3316, 27, 29, 32syl3anbrc 1340 . . . 4 ((((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) ∧ 𝑛𝐴) → (vol‘𝐵) ∈ (0[,)+∞))
349, 15, 1, 33esumpfinvalf 31362 . . 3 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → Σ*𝑛𝐴(vol‘𝐵) = Σ𝑛𝐴 (vol‘𝐵))
358, 34eqtr4d 2862 . 2 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ) → (vol‘ 𝑛𝐴 𝐵) = Σ*𝑛𝐴(vol‘𝐵))
36 simpr 488 . . . . . . . 8 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → ∃𝑛𝐴 (vol‘𝐵) = +∞)
37 nfv 1916 . . . . . . . . 9 𝑘(vol‘𝐵) = +∞
38 nfcv 2982 . . . . . . . . . . 11 𝑛vol
39 nfcsb1v 3890 . . . . . . . . . . 11 𝑛𝑘 / 𝑛𝐵
4038, 39nffv 6669 . . . . . . . . . 10 𝑛(vol‘𝑘 / 𝑛𝐵)
4140nfeq1 2997 . . . . . . . . 9 𝑛(vol‘𝑘 / 𝑛𝐵) = +∞
42 csbeq1a 3880 . . . . . . . . . 10 (𝑛 = 𝑘𝐵 = 𝑘 / 𝑛𝐵)
4342fveqeq2d 6667 . . . . . . . . 9 (𝑛 = 𝑘 → ((vol‘𝐵) = +∞ ↔ (vol‘𝑘 / 𝑛𝐵) = +∞))
4437, 41, 43cbvrexw 3427 . . . . . . . 8 (∃𝑛𝐴 (vol‘𝐵) = +∞ ↔ ∃𝑘𝐴 (vol‘𝑘 / 𝑛𝐵) = +∞)
4536, 44sylib 221 . . . . . . 7 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → ∃𝑘𝐴 (vol‘𝑘 / 𝑛𝐵) = +∞)
4639nfel1 2998 . . . . . . . . . . . . . 14 𝑛𝑘 / 𝑛𝐵 ∈ dom vol
4742eleq1d 2900 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝐵 ∈ dom vol ↔ 𝑘 / 𝑛𝐵 ∈ dom vol))
4846, 47rspc 3597 . . . . . . . . . . . . 13 (𝑘𝐴 → (∀𝑛𝐴 𝐵 ∈ dom vol → 𝑘 / 𝑛𝐵 ∈ dom vol))
4948impcom 411 . . . . . . . . . . . 12 ((∀𝑛𝐴 𝐵 ∈ dom vol ∧ 𝑘𝐴) → 𝑘 / 𝑛𝐵 ∈ dom vol)
5049adantll 713 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) ∧ 𝑘𝐴) → 𝑘 / 𝑛𝐵 ∈ dom vol)
51 finiunmbl 24146 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → 𝑛𝐴 𝐵 ∈ dom vol)
5251adantr 484 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) ∧ 𝑘𝐴) → 𝑛𝐴 𝐵 ∈ dom vol)
53 nfcv 2982 . . . . . . . . . . . . 13 𝑛𝑘
549, 53, 39, 42ssiun2sf 30317 . . . . . . . . . . . 12 (𝑘𝐴𝑘 / 𝑛𝐵 𝑛𝐴 𝐵)
5554adantl 485 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) ∧ 𝑘𝐴) → 𝑘 / 𝑛𝐵 𝑛𝐴 𝐵)
56 volss 24135 . . . . . . . . . . 11 ((𝑘 / 𝑛𝐵 ∈ dom vol ∧ 𝑛𝐴 𝐵 ∈ dom vol ∧ 𝑘 / 𝑛𝐵 𝑛𝐴 𝐵) → (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵))
5750, 52, 55, 56syl3anc 1368 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) ∧ 𝑘𝐴) → (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵))
58573adantl3 1165 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ 𝑘𝐴) → (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵))
5958adantlr 714 . . . . . . . 8 ((((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) ∧ 𝑘𝐴) → (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵))
6059ralrimiva 3177 . . . . . . 7 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → ∀𝑘𝐴 (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵))
61 r19.29r 3250 . . . . . . 7 ((∃𝑘𝐴 (vol‘𝑘 / 𝑛𝐵) = +∞ ∧ ∀𝑘𝐴 (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵)) → ∃𝑘𝐴 ((vol‘𝑘 / 𝑛𝐵) = +∞ ∧ (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵)))
6245, 60, 61syl2anc 587 . . . . . 6 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → ∃𝑘𝐴 ((vol‘𝑘 / 𝑛𝐵) = +∞ ∧ (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵)))
63 breq1 5056 . . . . . . . 8 ((vol‘𝑘 / 𝑛𝐵) = +∞ → ((vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵) ↔ +∞ ≤ (vol‘ 𝑛𝐴 𝐵)))
6463biimpa 480 . . . . . . 7 (((vol‘𝑘 / 𝑛𝐵) = +∞ ∧ (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵)) → +∞ ≤ (vol‘ 𝑛𝐴 𝐵))
6564reximi 3238 . . . . . 6 (∃𝑘𝐴 ((vol‘𝑘 / 𝑛𝐵) = +∞ ∧ (vol‘𝑘 / 𝑛𝐵) ≤ (vol‘ 𝑛𝐴 𝐵)) → ∃𝑘𝐴 +∞ ≤ (vol‘ 𝑛𝐴 𝐵))
6662, 65syl 17 . . . . 5 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → ∃𝑘𝐴 +∞ ≤ (vol‘ 𝑛𝐴 𝐵))
67 rexex 3235 . . . . . 6 (∃𝑘𝐴 +∞ ≤ (vol‘ 𝑛𝐴 𝐵) → ∃𝑘+∞ ≤ (vol‘ 𝑛𝐴 𝐵))
68 19.9v 1989 . . . . . 6 (∃𝑘+∞ ≤ (vol‘ 𝑛𝐴 𝐵) ↔ +∞ ≤ (vol‘ 𝑛𝐴 𝐵))
6967, 68sylib 221 . . . . 5 (∃𝑘𝐴 +∞ ≤ (vol‘ 𝑛𝐴 𝐵) → +∞ ≤ (vol‘ 𝑛𝐴 𝐵))
7066, 69syl 17 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → +∞ ≤ (vol‘ 𝑛𝐴 𝐵))
71 iccssxr 12815 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
7218ffvelrni 6839 . . . . . . . . 9 ( 𝑛𝐴 𝐵 ∈ dom vol → (vol‘ 𝑛𝐴 𝐵) ∈ (0[,]+∞))
7371, 72sseldi 3951 . . . . . . . 8 ( 𝑛𝐴 𝐵 ∈ dom vol → (vol‘ 𝑛𝐴 𝐵) ∈ ℝ*)
7451, 73syl 17 . . . . . . 7 ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol) → (vol‘ 𝑛𝐴 𝐵) ∈ ℝ*)
75743adant3 1129 . . . . . 6 ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) → (vol‘ 𝑛𝐴 𝐵) ∈ ℝ*)
7675adantr 484 . . . . 5 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → (vol‘ 𝑛𝐴 𝐵) ∈ ℝ*)
77 xgepnf 12553 . . . . 5 ((vol‘ 𝑛𝐴 𝐵) ∈ ℝ* → (+∞ ≤ (vol‘ 𝑛𝐴 𝐵) ↔ (vol‘ 𝑛𝐴 𝐵) = +∞))
7876, 77syl 17 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → (+∞ ≤ (vol‘ 𝑛𝐴 𝐵) ↔ (vol‘ 𝑛𝐴 𝐵) = +∞))
7970, 78mpbid 235 . . 3 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → (vol‘ 𝑛𝐴 𝐵) = +∞)
80 nfre1 3299 . . . . 5 𝑛𝑛𝐴 (vol‘𝐵) = +∞
8113, 80nfan 1901 . . . 4 𝑛((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞)
82 simpl1 1188 . . . 4 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → 𝐴 ∈ Fin)
83203ad2antl2 1183 . . . . 5 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ 𝑛𝐴) → (vol‘𝐵) ∈ (0[,]+∞))
8483adantlr 714 . . . 4 ((((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) ∧ 𝑛𝐴) → (vol‘𝐵) ∈ (0[,]+∞))
8581, 82, 84, 36esumpinfval 31359 . . 3 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → Σ*𝑛𝐴(vol‘𝐵) = +∞)
8679, 85eqtr4d 2862 . 2 (((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) ∧ ∃𝑛𝐴 (vol‘𝐵) = +∞) → (vol‘ 𝑛𝐴 𝐵) = Σ*𝑛𝐴(vol‘𝐵))
87 exmid 892 . . . . 5 (∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ¬ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ)
88 rexnal 3233 . . . . . 6 (∃𝑛𝐴 ¬ (vol‘𝐵) ∈ ℝ ↔ ¬ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ)
8988orbi2i 910 . . . . 5 ((∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ∃𝑛𝐴 ¬ (vol‘𝐵) ∈ ℝ) ↔ (∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ¬ ∀𝑛𝐴 (vol‘𝐵) ∈ ℝ))
9087, 89mpbir 234 . . . 4 (∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ∃𝑛𝐴 ¬ (vol‘𝐵) ∈ ℝ)
91 r19.29 3249 . . . . . . 7 ((∀𝑛𝐴 𝐵 ∈ dom vol ∧ ∃𝑛𝐴 ¬ (vol‘𝐵) ∈ ℝ) → ∃𝑛𝐴 (𝐵 ∈ dom vol ∧ ¬ (vol‘𝐵) ∈ ℝ))
92 xrge0nre 12838 . . . . . . . . 9 (((vol‘𝐵) ∈ (0[,]+∞) ∧ ¬ (vol‘𝐵) ∈ ℝ) → (vol‘𝐵) = +∞)
9319, 92sylan 583 . . . . . . . 8 ((𝐵 ∈ dom vol ∧ ¬ (vol‘𝐵) ∈ ℝ) → (vol‘𝐵) = +∞)
9493reximi 3238 . . . . . . 7 (∃𝑛𝐴 (𝐵 ∈ dom vol ∧ ¬ (vol‘𝐵) ∈ ℝ) → ∃𝑛𝐴 (vol‘𝐵) = +∞)
9591, 94syl 17 . . . . . 6 ((∀𝑛𝐴 𝐵 ∈ dom vol ∧ ∃𝑛𝐴 ¬ (vol‘𝐵) ∈ ℝ) → ∃𝑛𝐴 (vol‘𝐵) = +∞)
9695ex 416 . . . . 5 (∀𝑛𝐴 𝐵 ∈ dom vol → (∃𝑛𝐴 ¬ (vol‘𝐵) ∈ ℝ → ∃𝑛𝐴 (vol‘𝐵) = +∞))
9796orim2d 964 . . . 4 (∀𝑛𝐴 𝐵 ∈ dom vol → ((∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ∃𝑛𝐴 ¬ (vol‘𝐵) ∈ ℝ) → (∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ∃𝑛𝐴 (vol‘𝐵) = +∞)))
9890, 97mpi 20 . . 3 (∀𝑛𝐴 𝐵 ∈ dom vol → (∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ∃𝑛𝐴 (vol‘𝐵) = +∞))
99983ad2ant2 1131 . 2 ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) → (∀𝑛𝐴 (vol‘𝐵) ∈ ℝ ∨ ∃𝑛𝐴 (vol‘𝐵) = +∞))
10035, 86, 99mpjaodan 956 1 ((𝐴 ∈ Fin ∧ ∀𝑛𝐴 𝐵 ∈ dom vol ∧ Disj 𝑛𝐴 𝐵) → (vol‘ 𝑛𝐴 𝐵) = Σ*𝑛𝐴(vol‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wex 1781  wcel 2115  wral 3133  wrex 3134  csb 3866  wss 3919   ciun 4906  Disj wdisj 5018   class class class wbr 5053  dom cdm 5543  cfv 6344  (class class class)co 7146  Fincfn 8501  cr 10530  0cc0 10531  +∞cpnf 10666  *cxr 10668   < clt 10669  cle 10670  [,)cico 12735  [,]cicc 12736  Σcsu 15040  volcvol 24065  Σ*cesum 31313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-inf2 9097  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4826  df-int 4864  df-iun 4908  df-iin 4909  df-disj 5019  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-isom 6353  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-of 7400  df-om 7572  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8827  df-fi 8868  df-sup 8899  df-inf 8900  df-oi 8967  df-dju 9323  df-card 9361  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11695  df-3 11696  df-4 11697  df-5 11698  df-6 11699  df-7 11700  df-8 11701  df-9 11702  df-n0 11893  df-xnn0 11963  df-z 11977  df-dec 12094  df-uz 12239  df-q 12344  df-rp 12385  df-xneg 12502  df-xadd 12503  df-xmul 12504  df-ioo 12737  df-ioc 12738  df-ico 12739  df-icc 12740  df-fz 12893  df-fzo 13036  df-fl 13164  df-mod 13240  df-seq 13372  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14424  df-cj 14456  df-re 14457  df-im 14458  df-sqrt 14592  df-abs 14593  df-limsup 14826  df-clim 14843  df-rlim 14844  df-sum 15041  df-ef 15419  df-sin 15421  df-cos 15422  df-pi 15424  df-struct 16483  df-ndx 16484  df-slot 16485  df-base 16487  df-sets 16488  df-ress 16489  df-plusg 16576  df-mulr 16577  df-starv 16578  df-sca 16579  df-vsca 16580  df-ip 16581  df-tset 16582  df-ple 16583  df-ds 16585  df-unif 16586  df-hom 16587  df-cco 16588  df-rest 16694  df-topn 16695  df-0g 16713  df-gsum 16714  df-topgen 16715  df-pt 16716  df-prds 16719  df-ordt 16772  df-xrs 16773  df-qtop 16778  df-imas 16779  df-xps 16781  df-mre 16855  df-mrc 16856  df-acs 16858  df-ps 17808  df-tsr 17809  df-plusf 17849  df-mgm 17850  df-sgrp 17899  df-mnd 17910  df-mhm 17954  df-submnd 17955  df-grp 18104  df-minusg 18105  df-sbg 18106  df-mulg 18223  df-subg 18274  df-cntz 18445  df-cmn 18906  df-abl 18907  df-mgp 19238  df-ur 19250  df-ring 19297  df-cring 19298  df-subrg 19528  df-abv 19583  df-lmod 19631  df-scaf 19632  df-sra 19939  df-rgmod 19940  df-psmet 20532  df-xmet 20533  df-met 20534  df-bl 20535  df-mopn 20536  df-fbas 20537  df-fg 20538  df-cnfld 20541  df-top 21497  df-topon 21514  df-topsp 21536  df-bases 21549  df-cld 21622  df-ntr 21623  df-cls 21624  df-nei 21701  df-lp 21739  df-perf 21740  df-cn 21830  df-cnp 21831  df-haus 21918  df-tx 22165  df-hmeo 22358  df-fil 22449  df-fm 22541  df-flim 22542  df-flf 22543  df-tmd 22675  df-tgp 22676  df-tsms 22730  df-trg 22763  df-xms 22925  df-ms 22926  df-tms 22927  df-nm 23187  df-ngp 23188  df-nrg 23190  df-nlm 23191  df-ii 23480  df-cncf 23481  df-ovol 24066  df-vol 24067  df-limc 24467  df-dv 24468  df-log 25146  df-esum 31314
This theorem is referenced by:  volmeas  31517
  Copyright terms: Public domain W3C validator