![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqrelrd2 | Structured version Visualization version GIF version |
Description: A version of eqrelrdv2 5796 with explicit nonfree declarations. (Contributed by Thierry Arnoux, 28-Aug-2017.) |
Ref | Expression |
---|---|
eqrelrd2.1 | ⊢ Ⅎ𝑥𝜑 |
eqrelrd2.2 | ⊢ Ⅎ𝑦𝜑 |
eqrelrd2.3 | ⊢ Ⅎ𝑥𝐴 |
eqrelrd2.4 | ⊢ Ⅎ𝑦𝐴 |
eqrelrd2.5 | ⊢ Ⅎ𝑥𝐵 |
eqrelrd2.6 | ⊢ Ⅎ𝑦𝐵 |
eqrelrd2.7 | ⊢ (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
Ref | Expression |
---|---|
eqrelrd2 | ⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqrelrd2.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | eqrelrd2.2 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
3 | eqrelrd2.7 | . . . . 5 ⊢ (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) | |
4 | 2, 3 | alrimi 2207 | . . . 4 ⊢ (𝜑 → ∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
5 | 1, 4 | alrimi 2207 | . . 3 ⊢ (𝜑 → ∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
6 | 5 | adantl 483 | . 2 ⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → ∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)) |
7 | eqrelrd2.3 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
8 | eqrelrd2.4 | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
9 | eqrelrd2.5 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
10 | eqrelrd2.6 | . . . . . 6 ⊢ Ⅎ𝑦𝐵 | |
11 | 1, 2, 7, 8, 9, 10 | ssrelf 31844 | . . . . 5 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵))) |
12 | 1, 2, 9, 10, 7, 8 | ssrelf 31844 | . . . . 5 ⊢ (Rel 𝐵 → (𝐵 ⊆ 𝐴 ↔ ∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐵 → ⟨𝑥, 𝑦⟩ ∈ 𝐴))) |
13 | 11, 12 | bi2anan9 638 | . . . 4 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) ∧ ∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐵 → ⟨𝑥, 𝑦⟩ ∈ 𝐴)))) |
14 | eqss 3998 | . . . 4 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
15 | 2albiim 1894 | . . . 4 ⊢ (∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ (∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) ∧ ∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐵 → ⟨𝑥, 𝑦⟩ ∈ 𝐴))) | |
16 | 13, 14, 15 | 3bitr4g 314 | . . 3 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))) |
17 | 16 | adantr 482 | . 2 ⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵))) |
18 | 6, 17 | mpbird 257 | 1 ⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1540 = wceq 1542 Ⅎwnf 1786 ∈ wcel 2107 Ⅎwnfc 2884 ⊆ wss 3949 ⟨cop 4635 Rel wrel 5682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-opab 5212 df-xp 5683 df-rel 5684 |
This theorem is referenced by: fpwrelmap 31958 |
Copyright terms: Public domain | W3C validator |