| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqrelrd2 | Structured version Visualization version GIF version | ||
| Description: A version of eqrelrdv2 5785 with explicit nonfree declarations. (Contributed by Thierry Arnoux, 28-Aug-2017.) |
| Ref | Expression |
|---|---|
| eqrelrd2.1 | ⊢ Ⅎ𝑥𝜑 |
| eqrelrd2.2 | ⊢ Ⅎ𝑦𝜑 |
| eqrelrd2.3 | ⊢ Ⅎ𝑥𝐴 |
| eqrelrd2.4 | ⊢ Ⅎ𝑦𝐴 |
| eqrelrd2.5 | ⊢ Ⅎ𝑥𝐵 |
| eqrelrd2.6 | ⊢ Ⅎ𝑦𝐵 |
| eqrelrd2.7 | ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
| Ref | Expression |
|---|---|
| eqrelrd2 | ⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrelrd2.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | eqrelrd2.2 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 3 | eqrelrd2.7 | . . . . 5 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
| 4 | 2, 3 | alrimi 2212 | . . . 4 ⊢ (𝜑 → ∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
| 5 | 1, 4 | alrimi 2212 | . . 3 ⊢ (𝜑 → ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
| 6 | 5 | adantl 481 | . 2 ⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
| 7 | eqrelrd2.3 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 8 | eqrelrd2.4 | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
| 9 | eqrelrd2.5 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
| 10 | eqrelrd2.6 | . . . . . 6 ⊢ Ⅎ𝑦𝐵 | |
| 11 | 1, 2, 7, 8, 9, 10 | ssrelf 32562 | . . . . 5 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵))) |
| 12 | 1, 2, 9, 10, 7, 8 | ssrelf 32562 | . . . . 5 ⊢ (Rel 𝐵 → (𝐵 ⊆ 𝐴 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐵 → 〈𝑥, 𝑦〉 ∈ 𝐴))) |
| 13 | 11, 12 | bi2anan9 638 | . . . 4 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) ∧ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐵 → 〈𝑥, 𝑦〉 ∈ 𝐴)))) |
| 14 | eqss 3979 | . . . 4 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 15 | 2albiim 1889 | . . . 4 ⊢ (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) ↔ (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) ∧ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐵 → 〈𝑥, 𝑦〉 ∈ 𝐴))) | |
| 16 | 13, 14, 15 | 3bitr4g 314 | . . 3 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵))) |
| 17 | 16 | adantr 480 | . 2 ⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵))) |
| 18 | 6, 17 | mpbird 257 | 1 ⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 Ⅎwnfc 2882 ⊆ wss 3931 〈cop 4612 Rel wrel 5670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-opab 5186 df-xp 5671 df-rel 5672 |
| This theorem is referenced by: fpwrelmap 32679 |
| Copyright terms: Public domain | W3C validator |