| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqrelrd2 | Structured version Visualization version GIF version | ||
| Description: A version of eqrelrdv2 5760 with explicit nonfree declarations. (Contributed by Thierry Arnoux, 28-Aug-2017.) |
| Ref | Expression |
|---|---|
| eqrelrd2.1 | ⊢ Ⅎ𝑥𝜑 |
| eqrelrd2.2 | ⊢ Ⅎ𝑦𝜑 |
| eqrelrd2.3 | ⊢ Ⅎ𝑥𝐴 |
| eqrelrd2.4 | ⊢ Ⅎ𝑦𝐴 |
| eqrelrd2.5 | ⊢ Ⅎ𝑥𝐵 |
| eqrelrd2.6 | ⊢ Ⅎ𝑦𝐵 |
| eqrelrd2.7 | ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
| Ref | Expression |
|---|---|
| eqrelrd2 | ⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrelrd2.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | eqrelrd2.2 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 3 | eqrelrd2.7 | . . . . 5 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
| 4 | 2, 3 | alrimi 2214 | . . . 4 ⊢ (𝜑 → ∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
| 5 | 1, 4 | alrimi 2214 | . . 3 ⊢ (𝜑 → ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
| 6 | 5 | adantl 481 | . 2 ⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
| 7 | eqrelrd2.3 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
| 8 | eqrelrd2.4 | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
| 9 | eqrelrd2.5 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
| 10 | eqrelrd2.6 | . . . . . 6 ⊢ Ⅎ𝑦𝐵 | |
| 11 | 1, 2, 7, 8, 9, 10 | ssrelf 32549 | . . . . 5 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵))) |
| 12 | 1, 2, 9, 10, 7, 8 | ssrelf 32549 | . . . . 5 ⊢ (Rel 𝐵 → (𝐵 ⊆ 𝐴 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐵 → 〈𝑥, 𝑦〉 ∈ 𝐴))) |
| 13 | 11, 12 | bi2anan9 638 | . . . 4 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) ∧ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐵 → 〈𝑥, 𝑦〉 ∈ 𝐴)))) |
| 14 | eqss 3964 | . . . 4 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 15 | 2albiim 1890 | . . . 4 ⊢ (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) ↔ (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) ∧ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐵 → 〈𝑥, 𝑦〉 ∈ 𝐴))) | |
| 16 | 13, 14, 15 | 3bitr4g 314 | . . 3 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵))) |
| 17 | 16 | adantr 480 | . 2 ⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵))) |
| 18 | 6, 17 | mpbird 257 | 1 ⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2877 ⊆ wss 3916 〈cop 4597 Rel wrel 5645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-opab 5172 df-xp 5646 df-rel 5647 |
| This theorem is referenced by: fpwrelmap 32662 |
| Copyright terms: Public domain | W3C validator |