Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqrelrd2 | Structured version Visualization version GIF version |
Description: A version of eqrelrdv2 5705 with explicit nonfree declarations. (Contributed by Thierry Arnoux, 28-Aug-2017.) |
Ref | Expression |
---|---|
eqrelrd2.1 | ⊢ Ⅎ𝑥𝜑 |
eqrelrd2.2 | ⊢ Ⅎ𝑦𝜑 |
eqrelrd2.3 | ⊢ Ⅎ𝑥𝐴 |
eqrelrd2.4 | ⊢ Ⅎ𝑦𝐴 |
eqrelrd2.5 | ⊢ Ⅎ𝑥𝐵 |
eqrelrd2.6 | ⊢ Ⅎ𝑦𝐵 |
eqrelrd2.7 | ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
Ref | Expression |
---|---|
eqrelrd2 | ⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqrelrd2.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | eqrelrd2.2 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
3 | eqrelrd2.7 | . . . . 5 ⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) | |
4 | 2, 3 | alrimi 2206 | . . . 4 ⊢ (𝜑 → ∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
5 | 1, 4 | alrimi 2206 | . . 3 ⊢ (𝜑 → ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
6 | 5 | adantl 482 | . 2 ⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵)) |
7 | eqrelrd2.3 | . . . . . 6 ⊢ Ⅎ𝑥𝐴 | |
8 | eqrelrd2.4 | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
9 | eqrelrd2.5 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
10 | eqrelrd2.6 | . . . . . 6 ⊢ Ⅎ𝑦𝐵 | |
11 | 1, 2, 7, 8, 9, 10 | ssrelf 30955 | . . . . 5 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵))) |
12 | 1, 2, 9, 10, 7, 8 | ssrelf 30955 | . . . . 5 ⊢ (Rel 𝐵 → (𝐵 ⊆ 𝐴 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐵 → 〈𝑥, 𝑦〉 ∈ 𝐴))) |
13 | 11, 12 | bi2anan9 636 | . . . 4 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) ∧ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐵 → 〈𝑥, 𝑦〉 ∈ 𝐴)))) |
14 | eqss 3936 | . . . 4 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
15 | 2albiim 1893 | . . . 4 ⊢ (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) ↔ (∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐵) ∧ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐵 → 〈𝑥, 𝑦〉 ∈ 𝐴))) | |
16 | 13, 14, 15 | 3bitr4g 314 | . . 3 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵))) |
17 | 16 | adantr 481 | . 2 ⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → (𝐴 = 𝐵 ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵))) |
18 | 6, 17 | mpbird 256 | 1 ⊢ (((Rel 𝐴 ∧ Rel 𝐵) ∧ 𝜑) → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 Ⅎwnfc 2887 ⊆ wss 3887 〈cop 4567 Rel wrel 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-opab 5137 df-xp 5595 df-rel 5596 |
This theorem is referenced by: fpwrelmap 31068 |
Copyright terms: Public domain | W3C validator |