MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqrel Structured version   Visualization version   GIF version

Theorem eqrel 5724
Description: Extensionality principle for relations. Theorem 3.2(ii) of [Monk1] p. 33. (Contributed by NM, 2-Aug-1994.)
Assertion
Ref Expression
eqrel ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem eqrel
StepHypRef Expression
1 ssrel 5723 . . 3 (Rel 𝐴 → (𝐴𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
2 ssrel 5723 . . 3 (Rel 𝐵 → (𝐵𝐴 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐵 → ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
31, 2bi2anan9 638 . 2 ((Rel 𝐴 ∧ Rel 𝐵) → ((𝐴𝐵𝐵𝐴) ↔ (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) ∧ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐵 → ⟨𝑥, 𝑦⟩ ∈ 𝐴))))
4 eqss 3950 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
5 2albiim 1891 . 2 (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵) ↔ (∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐵) ∧ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐵 → ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
63, 4, 53bitr4g 314 1 ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2111  wss 3902  cop 4582  Rel wrel 5621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-ss 3919  df-opab 5154  df-xp 5622  df-rel 5623
This theorem is referenced by:  eqrelriv  5729  eqrelrdv  5732  eqbrrdv  5733  eqrelrdv2  5735  opabid2  5768  reldm0  5868  iss  5984  asymref  6063  funssres  6525  fsn  7068  eqrelf  38289  iss2  38371
  Copyright terms: Public domain W3C validator