MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqrelrel Structured version   Visualization version   GIF version

Theorem eqrelrel 5763
Description: Extensionality principle for ordered triples (used by 2-place operations df-oprab 7394), analogous to eqrel 5750. Use relrelss 6249 to express the antecedent in terms of the relation predicate. (Contributed by NM, 17-Dec-2008.)
Assertion
Ref Expression
eqrelrel ((𝐴𝐵) ⊆ ((V × V) × V) → (𝐴 = 𝐵 ↔ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧

Proof of Theorem eqrelrel
StepHypRef Expression
1 unss 4156 . 2 ((𝐴 ⊆ ((V × V) × V) ∧ 𝐵 ⊆ ((V × V) × V)) ↔ (𝐴𝐵) ⊆ ((V × V) × V))
2 ssrelrel 5762 . . . 4 (𝐴 ⊆ ((V × V) × V) → (𝐴𝐵 ↔ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵)))
3 ssrelrel 5762 . . . 4 (𝐵 ⊆ ((V × V) × V) → (𝐵𝐴 ↔ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴)))
42, 3bi2anan9 638 . . 3 ((𝐴 ⊆ ((V × V) × V) ∧ 𝐵 ⊆ ((V × V) × V)) → ((𝐴𝐵𝐵𝐴) ↔ (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) ∧ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴))))
5 eqss 3965 . . 3 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
6 2albiim 1890 . . . . 5 (∀𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) ↔ (∀𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) ∧ ∀𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴)))
76albii 1819 . . . 4 (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) ↔ ∀𝑥(∀𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) ∧ ∀𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴)))
8 19.26 1870 . . . 4 (∀𝑥(∀𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) ∧ ∀𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴)) ↔ (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) ∧ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴)))
97, 8bitri 275 . . 3 (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) ↔ (∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵) ∧ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵 → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴)))
104, 5, 93bitr4g 314 . 2 ((𝐴 ⊆ ((V × V) × V) ∧ 𝐵 ⊆ ((V × V) × V)) → (𝐴 = 𝐵 ↔ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵)))
111, 10sylbir 235 1 ((𝐴𝐵) ⊆ ((V × V) × V) → (𝐴 = 𝐵 ↔ ∀𝑥𝑦𝑧(⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐴 ↔ ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  Vcvv 3450  cun 3915  wss 3917  cop 4598   × cxp 5639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-opab 5173  df-xp 5647
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator