Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relcnveq2 Structured version   Visualization version   GIF version

Theorem relcnveq2 38311
Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 28-Apr-2019.)
Assertion
Ref Expression
relcnveq2 (Rel 𝑅 → (𝑅 = 𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem relcnveq2
StepHypRef Expression
1 cnvsym 6085 . . . 4 (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
21a1i 11 . . 3 (Rel 𝑅 → (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
3 dfrel2 6162 . . . . . . 7 (Rel 𝑅𝑅 = 𝑅)
43biimpi 216 . . . . . 6 (Rel 𝑅𝑅 = 𝑅)
54sseq1d 3978 . . . . 5 (Rel 𝑅 → (𝑅𝑅𝑅𝑅))
6 cnvsym 6085 . . . . 5 (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
75, 6bitr3di 286 . . . 4 (Rel 𝑅 → (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
8 relbrcnvg 6076 . . . . . 6 (Rel 𝑅 → (𝑥𝑅𝑦𝑦𝑅𝑥))
9 relbrcnvg 6076 . . . . . 6 (Rel 𝑅 → (𝑦𝑅𝑥𝑥𝑅𝑦))
108, 9imbi12d 344 . . . . 5 (Rel 𝑅 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑦𝑅𝑥𝑥𝑅𝑦)))
11102albidv 1923 . . . 4 (Rel 𝑅 → (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ↔ ∀𝑥𝑦(𝑦𝑅𝑥𝑥𝑅𝑦)))
127, 11bitrd 279 . . 3 (Rel 𝑅 → (𝑅𝑅 ↔ ∀𝑥𝑦(𝑦𝑅𝑥𝑥𝑅𝑦)))
132, 12anbi12d 632 . 2 (Rel 𝑅 → ((𝑅𝑅𝑅𝑅) ↔ (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦(𝑦𝑅𝑥𝑥𝑅𝑦))))
14 eqss 3962 . 2 (𝑅 = 𝑅 ↔ (𝑅𝑅𝑅𝑅))
15 2albiim 1890 . 2 (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦(𝑦𝑅𝑥𝑥𝑅𝑦)))
1613, 14, 153bitr4g 314 1 (Rel 𝑅 → (𝑅 = 𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wss 3914   class class class wbr 5107  ccnv 5637  Rel wrel 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646
This theorem is referenced by:  relcnveq4  38312
  Copyright terms: Public domain W3C validator