![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > relcnveq2 | Structured version Visualization version GIF version |
Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 28-Apr-2019.) |
Ref | Expression |
---|---|
relcnveq2 | ⊢ (Rel 𝑅 → (◡𝑅 = 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsym 6107 | . . . 4 ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) | |
2 | 1 | a1i 11 | . . 3 ⊢ (Rel 𝑅 → (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
3 | dfrel2 6182 | . . . . . . 7 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | |
4 | 3 | biimpi 215 | . . . . . 6 ⊢ (Rel 𝑅 → ◡◡𝑅 = 𝑅) |
5 | 4 | sseq1d 4008 | . . . . 5 ⊢ (Rel 𝑅 → (◡◡𝑅 ⊆ ◡𝑅 ↔ 𝑅 ⊆ ◡𝑅)) |
6 | cnvsym 6107 | . . . . 5 ⊢ (◡◡𝑅 ⊆ ◡𝑅 ↔ ∀𝑥∀𝑦(𝑥◡𝑅𝑦 → 𝑦◡𝑅𝑥)) | |
7 | 5, 6 | bitr3di 286 | . . . 4 ⊢ (Rel 𝑅 → (𝑅 ⊆ ◡𝑅 ↔ ∀𝑥∀𝑦(𝑥◡𝑅𝑦 → 𝑦◡𝑅𝑥))) |
8 | relbrcnvg 6098 | . . . . . 6 ⊢ (Rel 𝑅 → (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥)) | |
9 | relbrcnvg 6098 | . . . . . 6 ⊢ (Rel 𝑅 → (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦)) | |
10 | 8, 9 | imbi12d 344 | . . . . 5 ⊢ (Rel 𝑅 → ((𝑥◡𝑅𝑦 → 𝑦◡𝑅𝑥) ↔ (𝑦𝑅𝑥 → 𝑥𝑅𝑦))) |
11 | 10 | 2albidv 1918 | . . . 4 ⊢ (Rel 𝑅 → (∀𝑥∀𝑦(𝑥◡𝑅𝑦 → 𝑦◡𝑅𝑥) ↔ ∀𝑥∀𝑦(𝑦𝑅𝑥 → 𝑥𝑅𝑦))) |
12 | 7, 11 | bitrd 279 | . . 3 ⊢ (Rel 𝑅 → (𝑅 ⊆ ◡𝑅 ↔ ∀𝑥∀𝑦(𝑦𝑅𝑥 → 𝑥𝑅𝑦))) |
13 | 2, 12 | anbi12d 630 | . 2 ⊢ (Rel 𝑅 → ((◡𝑅 ⊆ 𝑅 ∧ 𝑅 ⊆ ◡𝑅) ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦(𝑦𝑅𝑥 → 𝑥𝑅𝑦)))) |
14 | eqss 3992 | . 2 ⊢ (◡𝑅 = 𝑅 ↔ (◡𝑅 ⊆ 𝑅 ∧ 𝑅 ⊆ ◡𝑅)) | |
15 | 2albiim 1885 | . 2 ⊢ (∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥) ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦(𝑦𝑅𝑥 → 𝑥𝑅𝑦))) | |
16 | 13, 14, 15 | 3bitr4g 314 | 1 ⊢ (Rel 𝑅 → (◡𝑅 = 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1531 = wceq 1533 ⊆ wss 3943 class class class wbr 5141 ◡ccnv 5668 Rel wrel 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5142 df-opab 5204 df-xp 5675 df-rel 5676 df-cnv 5677 |
This theorem is referenced by: relcnveq4 37706 |
Copyright terms: Public domain | W3C validator |