Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > relcnveq2 | Structured version Visualization version GIF version |
Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 28-Apr-2019.) |
Ref | Expression |
---|---|
relcnveq2 | ⊢ (Rel 𝑅 → (◡𝑅 = 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsym 6008 | . . . 4 ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) | |
2 | 1 | a1i 11 | . . 3 ⊢ (Rel 𝑅 → (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
3 | dfrel2 6081 | . . . . . . 7 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | |
4 | 3 | biimpi 215 | . . . . . 6 ⊢ (Rel 𝑅 → ◡◡𝑅 = 𝑅) |
5 | 4 | sseq1d 3948 | . . . . 5 ⊢ (Rel 𝑅 → (◡◡𝑅 ⊆ ◡𝑅 ↔ 𝑅 ⊆ ◡𝑅)) |
6 | cnvsym 6008 | . . . . 5 ⊢ (◡◡𝑅 ⊆ ◡𝑅 ↔ ∀𝑥∀𝑦(𝑥◡𝑅𝑦 → 𝑦◡𝑅𝑥)) | |
7 | 5, 6 | bitr3di 285 | . . . 4 ⊢ (Rel 𝑅 → (𝑅 ⊆ ◡𝑅 ↔ ∀𝑥∀𝑦(𝑥◡𝑅𝑦 → 𝑦◡𝑅𝑥))) |
8 | relbrcnvg 6002 | . . . . . 6 ⊢ (Rel 𝑅 → (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥)) | |
9 | relbrcnvg 6002 | . . . . . 6 ⊢ (Rel 𝑅 → (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦)) | |
10 | 8, 9 | imbi12d 344 | . . . . 5 ⊢ (Rel 𝑅 → ((𝑥◡𝑅𝑦 → 𝑦◡𝑅𝑥) ↔ (𝑦𝑅𝑥 → 𝑥𝑅𝑦))) |
11 | 10 | 2albidv 1927 | . . . 4 ⊢ (Rel 𝑅 → (∀𝑥∀𝑦(𝑥◡𝑅𝑦 → 𝑦◡𝑅𝑥) ↔ ∀𝑥∀𝑦(𝑦𝑅𝑥 → 𝑥𝑅𝑦))) |
12 | 7, 11 | bitrd 278 | . . 3 ⊢ (Rel 𝑅 → (𝑅 ⊆ ◡𝑅 ↔ ∀𝑥∀𝑦(𝑦𝑅𝑥 → 𝑥𝑅𝑦))) |
13 | 2, 12 | anbi12d 630 | . 2 ⊢ (Rel 𝑅 → ((◡𝑅 ⊆ 𝑅 ∧ 𝑅 ⊆ ◡𝑅) ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦(𝑦𝑅𝑥 → 𝑥𝑅𝑦)))) |
14 | eqss 3932 | . 2 ⊢ (◡𝑅 = 𝑅 ↔ (◡𝑅 ⊆ 𝑅 ∧ 𝑅 ⊆ ◡𝑅)) | |
15 | 2albiim 1894 | . 2 ⊢ (∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥) ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦(𝑦𝑅𝑥 → 𝑥𝑅𝑦))) | |
16 | 13, 14, 15 | 3bitr4g 313 | 1 ⊢ (Rel 𝑅 → (◡𝑅 = 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 ⊆ wss 3883 class class class wbr 5070 ◡ccnv 5579 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 |
This theorem is referenced by: relcnveq4 36386 |
Copyright terms: Public domain | W3C validator |