MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqoprab2b Structured version   Visualization version   GIF version

Theorem eqoprab2b 7204
Description: Equivalence of ordered pair abstraction subclass and biconditional. Compare eqopab2b 5404. Usage of this theorem is discouraged because it depends on ax-13 2379. Use the weaker eqoprab2bw 7203 when possible. (Contributed by Mario Carneiro, 4-Jan-2017.) (New usage is discouraged.)
Assertion
Ref Expression
eqoprab2b ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ ∀𝑥𝑦𝑧(𝜑𝜓))

Proof of Theorem eqoprab2b
StepHypRef Expression
1 ssoprab2b 7202 . . 3 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ ∀𝑥𝑦𝑧(𝜑𝜓))
2 ssoprab2b 7202 . . 3 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ ∀𝑥𝑦𝑧(𝜓𝜑))
31, 2anbi12i 629 . 2 (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ∧ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}) ↔ (∀𝑥𝑦𝑧(𝜑𝜓) ∧ ∀𝑥𝑦𝑧(𝜓𝜑)))
4 eqss 3930 . 2 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ∧ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}))
5 2albiim 1891 . . . 4 (∀𝑦𝑧(𝜑𝜓) ↔ (∀𝑦𝑧(𝜑𝜓) ∧ ∀𝑦𝑧(𝜓𝜑)))
65albii 1821 . . 3 (∀𝑥𝑦𝑧(𝜑𝜓) ↔ ∀𝑥(∀𝑦𝑧(𝜑𝜓) ∧ ∀𝑦𝑧(𝜓𝜑)))
7 19.26 1871 . . 3 (∀𝑥(∀𝑦𝑧(𝜑𝜓) ∧ ∀𝑦𝑧(𝜓𝜑)) ↔ (∀𝑥𝑦𝑧(𝜑𝜓) ∧ ∀𝑥𝑦𝑧(𝜓𝜑)))
86, 7bitri 278 . 2 (∀𝑥𝑦𝑧(𝜑𝜓) ↔ (∀𝑥𝑦𝑧(𝜑𝜓) ∧ ∀𝑥𝑦𝑧(𝜓𝜑)))
93, 4, 83bitr4i 306 1 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ ∀𝑥𝑦𝑧(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wss 3881  {coprab 7136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-13 2379  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-oprab 7139
This theorem is referenced by:  oprabbi  35599
  Copyright terms: Public domain W3C validator