MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqoprab2b Structured version   Visualization version   GIF version

Theorem eqoprab2b 7417
Description: Equivalence of ordered pair abstraction subclass and biconditional. Compare eqopab2b 5490. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker eqoprab2bw 7416 when possible. (Contributed by Mario Carneiro, 4-Jan-2017.) (New usage is discouraged.)
Assertion
Ref Expression
eqoprab2b ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ ∀𝑥𝑦𝑧(𝜑𝜓))

Proof of Theorem eqoprab2b
StepHypRef Expression
1 ssoprab2b 7415 . . 3 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ ∀𝑥𝑦𝑧(𝜑𝜓))
2 ssoprab2b 7415 . . 3 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ ∀𝑥𝑦𝑧(𝜓𝜑))
31, 2anbi12i 628 . 2 (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ∧ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}) ↔ (∀𝑥𝑦𝑧(𝜑𝜓) ∧ ∀𝑥𝑦𝑧(𝜓𝜑)))
4 eqss 3945 . 2 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ∧ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}))
5 2albiim 1891 . . . 4 (∀𝑦𝑧(𝜑𝜓) ↔ (∀𝑦𝑧(𝜑𝜓) ∧ ∀𝑦𝑧(𝜓𝜑)))
65albii 1820 . . 3 (∀𝑥𝑦𝑧(𝜑𝜓) ↔ ∀𝑥(∀𝑦𝑧(𝜑𝜓) ∧ ∀𝑦𝑧(𝜓𝜑)))
7 19.26 1871 . . 3 (∀𝑥(∀𝑦𝑧(𝜑𝜓) ∧ ∀𝑦𝑧(𝜓𝜑)) ↔ (∀𝑥𝑦𝑧(𝜑𝜓) ∧ ∀𝑥𝑦𝑧(𝜓𝜑)))
86, 7bitri 275 . 2 (∀𝑥𝑦𝑧(𝜑𝜓) ↔ (∀𝑥𝑦𝑧(𝜑𝜓) ∧ ∀𝑥𝑦𝑧(𝜓𝜑)))
93, 4, 83bitr4i 303 1 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ ∀𝑥𝑦𝑧(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wss 3897  {coprab 7347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-13 2372  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-oprab 7350
This theorem is referenced by:  oprabbi  38209
  Copyright terms: Public domain W3C validator