MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqoprab2b Structured version   Visualization version   GIF version

Theorem eqoprab2b 7464
Description: Equivalence of ordered pair abstraction subclass and biconditional. Compare eqopab2b 5545. Usage of this theorem is discouraged because it depends on ax-13 2370. Use the weaker eqoprab2bw 7463 when possible. (Contributed by Mario Carneiro, 4-Jan-2017.) (New usage is discouraged.)
Assertion
Ref Expression
eqoprab2b ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ ∀𝑥𝑦𝑧(𝜑𝜓))

Proof of Theorem eqoprab2b
StepHypRef Expression
1 ssoprab2b 7462 . . 3 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ ∀𝑥𝑦𝑧(𝜑𝜓))
2 ssoprab2b 7462 . . 3 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ ∀𝑥𝑦𝑧(𝜓𝜑))
31, 2anbi12i 627 . 2 (({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ∧ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}) ↔ (∀𝑥𝑦𝑧(𝜑𝜓) ∧ ∀𝑥𝑦𝑧(𝜓𝜑)))
4 eqss 3993 . 2 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ∧ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}))
5 2albiim 1893 . . . 4 (∀𝑦𝑧(𝜑𝜓) ↔ (∀𝑦𝑧(𝜑𝜓) ∧ ∀𝑦𝑧(𝜓𝜑)))
65albii 1821 . . 3 (∀𝑥𝑦𝑧(𝜑𝜓) ↔ ∀𝑥(∀𝑦𝑧(𝜑𝜓) ∧ ∀𝑦𝑧(𝜓𝜑)))
7 19.26 1873 . . 3 (∀𝑥(∀𝑦𝑧(𝜑𝜓) ∧ ∀𝑦𝑧(𝜓𝜑)) ↔ (∀𝑥𝑦𝑧(𝜑𝜓) ∧ ∀𝑥𝑦𝑧(𝜓𝜑)))
86, 7bitri 274 . 2 (∀𝑥𝑦𝑧(𝜑𝜓) ↔ (∀𝑥𝑦𝑧(𝜑𝜓) ∧ ∀𝑥𝑦𝑧(𝜓𝜑)))
93, 4, 83bitr4i 302 1 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ ∀𝑥𝑦𝑧(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1539   = wceq 1541  wss 3944  {coprab 7394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2370  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rab 3432  df-v 3475  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-sn 4623  df-pr 4625  df-op 4629  df-oprab 7397
This theorem is referenced by:  oprabbi  36832
  Copyright terms: Public domain W3C validator