| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqoprab2b | Structured version Visualization version GIF version | ||
| Description: Equivalence of ordered pair abstraction subclass and biconditional. Compare eqopab2b 5527. Usage of this theorem is discouraged because it depends on ax-13 2376. Use the weaker eqoprab2bw 7477 when possible. (Contributed by Mario Carneiro, 4-Jan-2017.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| eqoprab2b | ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ↔ ∀𝑥∀𝑦∀𝑧(𝜑 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssoprab2b 7476 | . . 3 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ↔ ∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓)) | |
| 2 | ssoprab2b 7476 | . . 3 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ↔ ∀𝑥∀𝑦∀𝑧(𝜓 → 𝜑)) | |
| 3 | 1, 2 | anbi12i 628 | . 2 ⊢ (({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ∧ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑}) ↔ (∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓) ∧ ∀𝑥∀𝑦∀𝑧(𝜓 → 𝜑))) |
| 4 | eqss 3974 | . 2 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ↔ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ∧ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑})) | |
| 5 | 2albiim 1890 | . . . 4 ⊢ (∀𝑦∀𝑧(𝜑 ↔ 𝜓) ↔ (∀𝑦∀𝑧(𝜑 → 𝜓) ∧ ∀𝑦∀𝑧(𝜓 → 𝜑))) | |
| 6 | 5 | albii 1819 | . . 3 ⊢ (∀𝑥∀𝑦∀𝑧(𝜑 ↔ 𝜓) ↔ ∀𝑥(∀𝑦∀𝑧(𝜑 → 𝜓) ∧ ∀𝑦∀𝑧(𝜓 → 𝜑))) |
| 7 | 19.26 1870 | . . 3 ⊢ (∀𝑥(∀𝑦∀𝑧(𝜑 → 𝜓) ∧ ∀𝑦∀𝑧(𝜓 → 𝜑)) ↔ (∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓) ∧ ∀𝑥∀𝑦∀𝑧(𝜓 → 𝜑))) | |
| 8 | 6, 7 | bitri 275 | . 2 ⊢ (∀𝑥∀𝑦∀𝑧(𝜑 ↔ 𝜓) ↔ (∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓) ∧ ∀𝑥∀𝑦∀𝑧(𝜓 → 𝜑))) |
| 9 | 3, 4, 8 | 3bitr4i 303 | 1 ⊢ ({〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} ↔ ∀𝑥∀𝑦∀𝑧(𝜑 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ⊆ wss 3926 {coprab 7406 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2376 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-oprab 7409 |
| This theorem is referenced by: oprabbi 38185 |
| Copyright terms: Public domain | W3C validator |