Proof of Theorem 2reuswap2
Step | Hyp | Ref
| Expression |
1 | | df-ral 3068 |
. . 3
⊢
(∀𝑥 ∈
𝐴 ∃*𝑦(𝑦 ∈ 𝐵 ∧ 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∃*𝑦(𝑦 ∈ 𝐵 ∧ 𝜑))) |
2 | | moanimv 2621 |
. . . 4
⊢
(∃*𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑)) ↔ (𝑥 ∈ 𝐴 → ∃*𝑦(𝑦 ∈ 𝐵 ∧ 𝜑))) |
3 | 2 | albii 1823 |
. . 3
⊢
(∀𝑥∃*𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑)) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∃*𝑦(𝑦 ∈ 𝐵 ∧ 𝜑))) |
4 | 1, 3 | bitr4i 277 |
. 2
⊢
(∀𝑥 ∈
𝐴 ∃*𝑦(𝑦 ∈ 𝐵 ∧ 𝜑) ↔ ∀𝑥∃*𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑))) |
5 | | 2euswapv 2632 |
. . 3
⊢
(∀𝑥∃*𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑)) → (∃!𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑)) → ∃!𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑)))) |
6 | | df-reu 3070 |
. . . 4
⊢
(∃!𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜑)) |
7 | | r19.42v 3276 |
. . . . . . 7
⊢
(∃𝑦 ∈
𝐵 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜑)) |
8 | | df-rex 3069 |
. . . . . . 7
⊢
(∃𝑦 ∈
𝐵 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦(𝑦 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
9 | 7, 8 | bitr3i 276 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜑) ↔ ∃𝑦(𝑦 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
10 | | an12 641 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ (𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑))) |
11 | 10 | exbii 1851 |
. . . . . 6
⊢
(∃𝑦(𝑦 ∈ 𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ ∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑))) |
12 | 9, 11 | bitri 274 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜑) ↔ ∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑))) |
13 | 12 | eubii 2585 |
. . . 4
⊢
(∃!𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝜑) ↔ ∃!𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑))) |
14 | 6, 13 | bitri 274 |
. . 3
⊢
(∃!𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃!𝑥∃𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑))) |
15 | | df-reu 3070 |
. . . 4
⊢
(∃!𝑦 ∈
𝐵 ∃𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦(𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑)) |
16 | | r19.42v 3276 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑)) |
17 | | df-rex 3069 |
. . . . . 6
⊢
(∃𝑥 ∈
𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑))) |
18 | 16, 17 | bitr3i 276 |
. . . . 5
⊢ ((𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑))) |
19 | 18 | eubii 2585 |
. . . 4
⊢
(∃!𝑦(𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑) ↔ ∃!𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑))) |
20 | 15, 19 | bitri 274 |
. . 3
⊢
(∃!𝑦 ∈
𝐵 ∃𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦∃𝑥(𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑))) |
21 | 5, 14, 20 | 3imtr4g 295 |
. 2
⊢
(∀𝑥∃*𝑦(𝑥 ∈ 𝐴 ∧ (𝑦 ∈ 𝐵 ∧ 𝜑)) → (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑)) |
22 | 4, 21 | sylbi 216 |
1
⊢
(∀𝑥 ∈
𝐴 ∃*𝑦(𝑦 ∈ 𝐵 ∧ 𝜑) → (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑)) |