MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euxfr2w Structured version   Visualization version   GIF version

Theorem euxfr2w 3709
Description: Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Version of euxfr2 3711 with a disjoint variable condition, which does not require ax-13 2389. (Contributed by NM, 14-Nov-2004.) (Revised by Gino Giotto, 10-Jan-2024.)
Hypotheses
Ref Expression
euxfr2w.1 𝐴 ∈ V
euxfr2w.2 ∃*𝑦 𝑥 = 𝐴
Assertion
Ref Expression
euxfr2w (∃!𝑥𝑦(𝑥 = 𝐴𝜑) ↔ ∃!𝑦𝜑)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)

Proof of Theorem euxfr2w
StepHypRef Expression
1 2euswapv 2714 . . . 4 (∀𝑥∃*𝑦(𝑥 = 𝐴𝜑) → (∃!𝑥𝑦(𝑥 = 𝐴𝜑) → ∃!𝑦𝑥(𝑥 = 𝐴𝜑)))
2 euxfr2w.2 . . . . . 6 ∃*𝑦 𝑥 = 𝐴
32moani 2636 . . . . 5 ∃*𝑦(𝜑𝑥 = 𝐴)
4 ancom 463 . . . . . 6 ((𝜑𝑥 = 𝐴) ↔ (𝑥 = 𝐴𝜑))
54mobii 2630 . . . . 5 (∃*𝑦(𝜑𝑥 = 𝐴) ↔ ∃*𝑦(𝑥 = 𝐴𝜑))
63, 5mpbi 232 . . . 4 ∃*𝑦(𝑥 = 𝐴𝜑)
71, 6mpg 1797 . . 3 (∃!𝑥𝑦(𝑥 = 𝐴𝜑) → ∃!𝑦𝑥(𝑥 = 𝐴𝜑))
8 2euswapv 2714 . . . 4 (∀𝑦∃*𝑥(𝑥 = 𝐴𝜑) → (∃!𝑦𝑥(𝑥 = 𝐴𝜑) → ∃!𝑥𝑦(𝑥 = 𝐴𝜑)))
9 moeq 3696 . . . . . 6 ∃*𝑥 𝑥 = 𝐴
109moani 2636 . . . . 5 ∃*𝑥(𝜑𝑥 = 𝐴)
114mobii 2630 . . . . 5 (∃*𝑥(𝜑𝑥 = 𝐴) ↔ ∃*𝑥(𝑥 = 𝐴𝜑))
1210, 11mpbi 232 . . . 4 ∃*𝑥(𝑥 = 𝐴𝜑)
138, 12mpg 1797 . . 3 (∃!𝑦𝑥(𝑥 = 𝐴𝜑) → ∃!𝑥𝑦(𝑥 = 𝐴𝜑))
147, 13impbii 211 . 2 (∃!𝑥𝑦(𝑥 = 𝐴𝜑) ↔ ∃!𝑦𝑥(𝑥 = 𝐴𝜑))
15 euxfr2w.1 . . . 4 𝐴 ∈ V
16 biidd 264 . . . 4 (𝑥 = 𝐴 → (𝜑𝜑))
1715, 16ceqsexv 3540 . . 3 (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜑)
1817eubii 2669 . 2 (∃!𝑦𝑥(𝑥 = 𝐴𝜑) ↔ ∃!𝑦𝜑)
1914, 18bitri 277 1 (∃!𝑥𝑦(𝑥 = 𝐴𝜑) ↔ ∃!𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wex 1779  wcel 2113  ∃*wmo 2619  ∃!weu 2652  Vcvv 3493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-cleq 2813  df-clel 2892
This theorem is referenced by:  euxfrw  3710  euop2  5399
  Copyright terms: Public domain W3C validator