| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > euxfr2w | Structured version Visualization version GIF version | ||
| Description: Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. Version of euxfr2 3710 with a disjoint variable condition, which does not require ax-13 2377. (Contributed by NM, 14-Nov-2004.) Avoid ax-13 2377. (Revised by GG, 10-Jan-2024.) |
| Ref | Expression |
|---|---|
| euxfr2w.1 | ⊢ 𝐴 ∈ V |
| euxfr2w.2 | ⊢ ∃*𝑦 𝑥 = 𝐴 |
| Ref | Expression |
|---|---|
| euxfr2w | ⊢ (∃!𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜑) ↔ ∃!𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2euswapv 2630 | . . . 4 ⊢ (∀𝑥∃*𝑦(𝑥 = 𝐴 ∧ 𝜑) → (∃!𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜑) → ∃!𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) | |
| 2 | euxfr2w.2 | . . . . . 6 ⊢ ∃*𝑦 𝑥 = 𝐴 | |
| 3 | 2 | moani 2553 | . . . . 5 ⊢ ∃*𝑦(𝜑 ∧ 𝑥 = 𝐴) |
| 4 | ancom 460 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) ↔ (𝑥 = 𝐴 ∧ 𝜑)) | |
| 5 | 4 | mobii 2548 | . . . . 5 ⊢ (∃*𝑦(𝜑 ∧ 𝑥 = 𝐴) ↔ ∃*𝑦(𝑥 = 𝐴 ∧ 𝜑)) |
| 6 | 3, 5 | mpbi 230 | . . . 4 ⊢ ∃*𝑦(𝑥 = 𝐴 ∧ 𝜑) |
| 7 | 1, 6 | mpg 1797 | . . 3 ⊢ (∃!𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜑) → ∃!𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
| 8 | 2euswapv 2630 | . . . 4 ⊢ (∀𝑦∃*𝑥(𝑥 = 𝐴 ∧ 𝜑) → (∃!𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → ∃!𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜑))) | |
| 9 | moeq 3695 | . . . . . 6 ⊢ ∃*𝑥 𝑥 = 𝐴 | |
| 10 | 9 | moani 2553 | . . . . 5 ⊢ ∃*𝑥(𝜑 ∧ 𝑥 = 𝐴) |
| 11 | 4 | mobii 2548 | . . . . 5 ⊢ (∃*𝑥(𝜑 ∧ 𝑥 = 𝐴) ↔ ∃*𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
| 12 | 10, 11 | mpbi 230 | . . . 4 ⊢ ∃*𝑥(𝑥 = 𝐴 ∧ 𝜑) |
| 13 | 8, 12 | mpg 1797 | . . 3 ⊢ (∃!𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑) → ∃!𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜑)) |
| 14 | 7, 13 | impbii 209 | . 2 ⊢ (∃!𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜑) ↔ ∃!𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑)) |
| 15 | euxfr2w.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 16 | biidd 262 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜑)) | |
| 17 | 15, 16 | ceqsexv 3516 | . . 3 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜑) |
| 18 | 17 | eubii 2585 | . 2 ⊢ (∃!𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ ∃!𝑦𝜑) |
| 19 | 14, 18 | bitri 275 | 1 ⊢ (∃!𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜑) ↔ ∃!𝑦𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃*wmo 2538 ∃!weu 2568 Vcvv 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-mo 2540 df-eu 2569 df-cleq 2728 df-clel 2810 |
| This theorem is referenced by: euxfrw 3709 euop2 5492 |
| Copyright terms: Public domain | W3C validator |