Proof of Theorem 2mosOLD
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | 2mo 2647 | . 2
⊢
(∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∀𝑥∀𝑦∀𝑧∀𝑤((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) | 
| 2 |  | nfv 1913 | . . . . . . . . . 10
⊢
Ⅎ𝑦 𝑥 = 𝑧 | 
| 3 | 2 | sbrim 2303 | . . . . . . . . 9
⊢ ([𝑤 / 𝑦](𝑥 = 𝑧 → 𝜑) ↔ (𝑥 = 𝑧 → [𝑤 / 𝑦]𝜑)) | 
| 4 |  | 2mos.1 | . . . . . . . . . . . 12
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) | 
| 5 | 4 | expcom 413 | . . . . . . . . . . 11
⊢ (𝑦 = 𝑤 → (𝑥 = 𝑧 → (𝜑 ↔ 𝜓))) | 
| 6 | 5 | pm5.74d 273 | . . . . . . . . . 10
⊢ (𝑦 = 𝑤 → ((𝑥 = 𝑧 → 𝜑) ↔ (𝑥 = 𝑧 → 𝜓))) | 
| 7 | 6 | sbievw 2092 | . . . . . . . . 9
⊢ ([𝑤 / 𝑦](𝑥 = 𝑧 → 𝜑) ↔ (𝑥 = 𝑧 → 𝜓)) | 
| 8 | 3, 7 | bitr3i 277 | . . . . . . . 8
⊢ ((𝑥 = 𝑧 → [𝑤 / 𝑦]𝜑) ↔ (𝑥 = 𝑧 → 𝜓)) | 
| 9 | 8 | pm5.74ri 272 | . . . . . . 7
⊢ (𝑥 = 𝑧 → ([𝑤 / 𝑦]𝜑 ↔ 𝜓)) | 
| 10 | 9 | sbievw 2092 | . . . . . 6
⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ 𝜓) | 
| 11 | 10 | anbi2i 623 | . . . . 5
⊢ ((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) ↔ (𝜑 ∧ 𝜓)) | 
| 12 | 11 | imbi1i 349 | . . . 4
⊢ (((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ((𝜑 ∧ 𝜓) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) | 
| 13 | 12 | 2albii 1819 | . . 3
⊢
(∀𝑧∀𝑤((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∀𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) | 
| 14 | 13 | 2albii 1819 | . 2
⊢
(∀𝑥∀𝑦∀𝑧∀𝑤((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∀𝑥∀𝑦∀𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) | 
| 15 | 1, 14 | bitri 275 | 1
⊢
(∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∀𝑥∀𝑦∀𝑧∀𝑤((𝜑 ∧ 𝜓) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |