![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcbidv | Structured version Visualization version GIF version |
Description: Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) Drop ax-12 2172. (Revised by Gino Giotto, 1-Dec-2023.) |
Ref | Expression |
---|---|
sbcbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
sbcbidv | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2734 | . 2 ⊢ (𝜑 → 𝐴 = 𝐴) | |
2 | sbcbidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | sbceqbid 3785 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 [wsbc 3778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-sbc 3779 |
This theorem is referenced by: sbcbii 3838 csbied 3932 2nreu 4442 opelopabsb 5531 opelopabgf 5541 opelopabf 5546 sbcfng 6715 sbcfg 6716 fmptsnd 7167 frpoins3xpg 8126 frpoins3xp3g 8127 wrd2ind 14673 islmod 20475 elmptrab 23331 f1od2 31977 isomnd 32250 isorng 32448 indexa 36649 sdclem2 36658 sdclem1 36659 fdc 36661 sbcalf 37030 sbcexf 37031 hdmap1ffval 40714 hdmap1fval 40715 hdmapffval 40745 hdmapfval 40746 hgmapffval 40804 hgmapfval 40805 f1o2d2 41103 rexrabdioph 41580 rexfrabdioph 41581 2rexfrabdioph 41582 3rexfrabdioph 41583 4rexfrabdioph 41584 6rexfrabdioph 41585 7rexfrabdioph 41586 2sbc6g 43222 2sbc5g 43223 or2expropbilem1 45790 |
Copyright terms: Public domain | W3C validator |