Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcbidv | Structured version Visualization version GIF version |
Description: Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) Drop ax-12 2170. (Revised by Gino Giotto, 1-Dec-2023.) |
Ref | Expression |
---|---|
sbcbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
sbcbidv | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2737 | . 2 ⊢ (𝜑 → 𝐴 = 𝐴) | |
2 | sbcbidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | sbceqbid 3733 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 [wsbc 3726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-sbc 3727 |
This theorem is referenced by: sbcbii 3786 csbied 3880 2nreu 4387 opelopabsb 5468 opelopabgf 5478 opelopabf 5483 sbcfng 6642 sbcfg 6643 fmptsnd 7091 wrd2ind 14526 islmod 20225 elmptrab 23076 f1od2 31284 isomnd 31555 isorng 31739 frpoins3xpg 34013 frpoins3xp3g 34014 indexa 35989 sdclem2 35998 sdclem1 35999 fdc 36001 sbcalf 36370 sbcexf 36371 hdmap1ffval 40056 hdmap1fval 40057 hdmapffval 40087 hdmapfval 40088 hgmapffval 40146 hgmapfval 40147 rexrabdioph 40866 rexfrabdioph 40867 2rexfrabdioph 40868 3rexfrabdioph 40869 4rexfrabdioph 40870 6rexfrabdioph 40871 7rexfrabdioph 40872 2sbc6g 42343 2sbc5g 42344 or2expropbilem1 44866 |
Copyright terms: Public domain | W3C validator |