Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcbidv | Structured version Visualization version GIF version |
Description: Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) Drop ax-12 2173. (Revised by Gino Giotto, 1-Dec-2023.) |
Ref | Expression |
---|---|
sbcbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
sbcbidv | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2739 | . 2 ⊢ (𝜑 → 𝐴 = 𝐴) | |
2 | sbcbidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | sbceqbid 3718 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 [wsbc 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-sbc 3712 |
This theorem is referenced by: sbcbii 3772 csbied 3866 2nreu 4372 opelopabsb 5436 opelopabgf 5446 opelopabf 5451 sbcfng 6581 sbcfg 6582 fmptsnd 7023 wrd2ind 14364 islmod 20042 elmptrab 22886 f1od2 30958 isomnd 31229 isorng 31400 frpoins3xpg 33714 frpoins3xp3g 33715 indexa 35818 sdclem2 35827 sdclem1 35828 fdc 35830 sbcalf 36199 sbcexf 36200 hdmap1ffval 39736 hdmap1fval 39737 hdmapffval 39767 hdmapfval 39768 hgmapffval 39826 hgmapfval 39827 rexrabdioph 40532 rexfrabdioph 40533 2rexfrabdioph 40534 3rexfrabdioph 40535 4rexfrabdioph 40536 6rexfrabdioph 40537 7rexfrabdioph 40538 2sbc6g 41922 2sbc5g 41923 or2expropbilem1 44413 |
Copyright terms: Public domain | W3C validator |