![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcbidv | Structured version Visualization version GIF version |
Description: Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) Drop ax-12 2175. (Revised by GG, 1-Dec-2023.) |
Ref | Expression |
---|---|
sbcbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
sbcbidv | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2736 | . 2 ⊢ (𝜑 → 𝐴 = 𝐴) | |
2 | sbcbidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | sbceqbid 3798 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 [wsbc 3791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-sbc 3792 |
This theorem is referenced by: sbcbii 3852 csbeq2dv 3915 csbied 3946 2nreu 4450 opelopabsb 5540 opelopabgf 5550 opelopabf 5555 sbcfng 6734 sbcfg 6735 fmptsnd 7189 frpoins3xpg 8164 frpoins3xp3g 8165 wrd2ind 14758 islmod 20879 elmptrab 23851 f1od2 32739 isomnd 33061 isorng 33309 indexa 37720 sdclem2 37729 sdclem1 37730 fdc 37732 sbcalf 38101 sbcexf 38102 hdmap1ffval 41778 hdmap1fval 41779 hdmapffval 41809 hdmapfval 41810 hgmapffval 41868 hgmapfval 41869 f1o2d2 42253 rexrabdioph 42782 rexfrabdioph 42783 2rexfrabdioph 42784 3rexfrabdioph 42785 4rexfrabdioph 42786 6rexfrabdioph 42787 7rexfrabdioph 42788 2sbc6g 44411 2sbc5g 44412 or2expropbilem1 46982 |
Copyright terms: Public domain | W3C validator |