| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcbidv | Structured version Visualization version GIF version | ||
| Description: Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) Drop ax-12 2180. (Revised by GG, 1-Dec-2023.) |
| Ref | Expression |
|---|---|
| sbcbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| sbcbidv | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2732 | . 2 ⊢ (𝜑 → 𝐴 = 𝐴) | |
| 2 | sbcbidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | sbceqbid 3743 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 [wsbc 3736 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-sbc 3737 |
| This theorem is referenced by: sbcbii 3793 csbeq2dv 3852 csbied 3881 2nreu 4391 opelopabsb 5468 opelopabgf 5478 opelopabf 5483 sbcfng 6648 sbcfg 6649 fmptsnd 7103 frpoins3xpg 8070 frpoins3xp3g 8071 wrd2ind 14630 isomnd 20035 isorng 20776 islmod 20797 elmptrab 23742 f1od2 32702 indexa 37781 sdclem2 37790 sdclem1 37791 fdc 37793 sbcalf 38162 sbcexf 38163 hdmap1ffval 41842 hdmap1fval 41843 hdmapffval 41873 hdmapfval 41874 hgmapffval 41932 hgmapfval 41933 f1o2d2 42274 rexrabdioph 42835 rexfrabdioph 42836 2rexfrabdioph 42837 3rexfrabdioph 42838 4rexfrabdioph 42839 6rexfrabdioph 42840 7rexfrabdioph 42841 2sbc6g 44456 2sbc5g 44457 or2expropbilem1 47071 |
| Copyright terms: Public domain | W3C validator |