![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcbidv | Structured version Visualization version GIF version |
Description: Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) Drop ax-12 2172. (Revised by Gino Giotto, 1-Dec-2023.) |
Ref | Expression |
---|---|
sbcbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
sbcbidv | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2734 | . 2 ⊢ (𝜑 → 𝐴 = 𝐴) | |
2 | sbcbidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | sbceqbid 3785 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 [wsbc 3778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-sbc 3779 |
This theorem is referenced by: sbcbii 3838 csbied 3932 2nreu 4442 opelopabsb 5531 opelopabgf 5541 opelopabf 5546 sbcfng 6715 sbcfg 6716 fmptsnd 7167 frpoins3xpg 8126 frpoins3xp3g 8127 wrd2ind 14673 islmod 20475 elmptrab 23331 f1od2 31946 isomnd 32219 isorng 32417 indexa 36601 sdclem2 36610 sdclem1 36611 fdc 36613 sbcalf 36982 sbcexf 36983 hdmap1ffval 40666 hdmap1fval 40667 hdmapffval 40697 hdmapfval 40698 hgmapffval 40756 hgmapfval 40757 f1o2d2 41055 rexrabdioph 41532 rexfrabdioph 41533 2rexfrabdioph 41534 3rexfrabdioph 41535 4rexfrabdioph 41536 6rexfrabdioph 41537 7rexfrabdioph 41538 2sbc6g 43174 2sbc5g 43175 or2expropbilem1 45742 |
Copyright terms: Public domain | W3C validator |