| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcbidv | Structured version Visualization version GIF version | ||
| Description: Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) Drop ax-12 2177. (Revised by GG, 1-Dec-2023.) |
| Ref | Expression |
|---|---|
| sbcbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| sbcbidv | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2736 | . 2 ⊢ (𝜑 → 𝐴 = 𝐴) | |
| 2 | sbcbidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | sbceqbid 3772 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 [wsbc 3765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-sbc 3766 |
| This theorem is referenced by: sbcbii 3822 csbeq2dv 3881 csbied 3910 2nreu 4419 opelopabsb 5505 opelopabgf 5515 opelopabf 5520 sbcfng 6703 sbcfg 6704 fmptsnd 7161 frpoins3xpg 8139 frpoins3xp3g 8140 wrd2ind 14741 islmod 20821 elmptrab 23765 f1od2 32698 isomnd 33069 isorng 33321 indexa 37757 sdclem2 37766 sdclem1 37767 fdc 37769 sbcalf 38138 sbcexf 38139 hdmap1ffval 41814 hdmap1fval 41815 hdmapffval 41845 hdmapfval 41846 hgmapffval 41904 hgmapfval 41905 f1o2d2 42284 rexrabdioph 42817 rexfrabdioph 42818 2rexfrabdioph 42819 3rexfrabdioph 42820 4rexfrabdioph 42821 6rexfrabdioph 42822 7rexfrabdioph 42823 2sbc6g 44439 2sbc5g 44440 or2expropbilem1 47061 |
| Copyright terms: Public domain | W3C validator |