Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcbidv | Structured version Visualization version GIF version |
Description: Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) Drop ax-12 2171. (Revised by Gino Giotto, 1-Dec-2023.) |
Ref | Expression |
---|---|
sbcbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
sbcbidv | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2739 | . 2 ⊢ (𝜑 → 𝐴 = 𝐴) | |
2 | sbcbidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | sbceqbid 3723 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 [wsbc 3716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-sbc 3717 |
This theorem is referenced by: sbcbii 3776 csbied 3870 2nreu 4375 opelopabsb 5443 opelopabgf 5453 opelopabf 5458 sbcfng 6597 sbcfg 6598 fmptsnd 7041 wrd2ind 14436 islmod 20127 elmptrab 22978 f1od2 31056 isomnd 31327 isorng 31498 frpoins3xpg 33787 frpoins3xp3g 33788 indexa 35891 sdclem2 35900 sdclem1 35901 fdc 35903 sbcalf 36272 sbcexf 36273 hdmap1ffval 39809 hdmap1fval 39810 hdmapffval 39840 hdmapfval 39841 hgmapffval 39899 hgmapfval 39900 rexrabdioph 40616 rexfrabdioph 40617 2rexfrabdioph 40618 3rexfrabdioph 40619 4rexfrabdioph 40620 6rexfrabdioph 40621 7rexfrabdioph 40622 2sbc6g 42033 2sbc5g 42034 or2expropbilem1 44526 |
Copyright terms: Public domain | W3C validator |