| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcbidv | Structured version Visualization version GIF version | ||
| Description: Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) Drop ax-12 2178. (Revised by GG, 1-Dec-2023.) |
| Ref | Expression |
|---|---|
| sbcbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| sbcbidv | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2730 | . 2 ⊢ (𝜑 → 𝐴 = 𝐴) | |
| 2 | sbcbidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | sbceqbid 3760 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 [wsbc 3753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3754 |
| This theorem is referenced by: sbcbii 3810 csbeq2dv 3869 csbied 3898 2nreu 4407 opelopabsb 5490 opelopabgf 5500 opelopabf 5505 sbcfng 6685 sbcfg 6686 fmptsnd 7143 frpoins3xpg 8119 frpoins3xp3g 8120 wrd2ind 14688 islmod 20770 elmptrab 23714 f1od2 32644 isomnd 33015 isorng 33277 indexa 37727 sdclem2 37736 sdclem1 37737 fdc 37739 sbcalf 38108 sbcexf 38109 hdmap1ffval 41789 hdmap1fval 41790 hdmapffval 41820 hdmapfval 41821 hgmapffval 41879 hgmapfval 41880 f1o2d2 42221 rexrabdioph 42782 rexfrabdioph 42783 2rexfrabdioph 42784 3rexfrabdioph 42785 4rexfrabdioph 42786 6rexfrabdioph 42787 7rexfrabdioph 42788 2sbc6g 44404 2sbc5g 44405 or2expropbilem1 47033 |
| Copyright terms: Public domain | W3C validator |