| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcbidv | Structured version Visualization version GIF version | ||
| Description: Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) Drop ax-12 2178. (Revised by GG, 1-Dec-2023.) |
| Ref | Expression |
|---|---|
| sbcbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| sbcbidv | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2730 | . 2 ⊢ (𝜑 → 𝐴 = 𝐴) | |
| 2 | sbcbidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | sbceqbid 3757 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 [wsbc 3750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3751 |
| This theorem is referenced by: sbcbii 3807 csbeq2dv 3866 csbied 3895 2nreu 4403 opelopabsb 5485 opelopabgf 5495 opelopabf 5500 sbcfng 6667 sbcfg 6668 fmptsnd 7125 frpoins3xpg 8096 frpoins3xp3g 8097 wrd2ind 14664 islmod 20746 elmptrab 23690 f1od2 32617 isomnd 32988 isorng 33250 indexa 37700 sdclem2 37709 sdclem1 37710 fdc 37712 sbcalf 38081 sbcexf 38082 hdmap1ffval 41762 hdmap1fval 41763 hdmapffval 41793 hdmapfval 41794 hgmapffval 41852 hgmapfval 41853 f1o2d2 42194 rexrabdioph 42755 rexfrabdioph 42756 2rexfrabdioph 42757 3rexfrabdioph 42758 4rexfrabdioph 42759 6rexfrabdioph 42760 7rexfrabdioph 42761 2sbc6g 44377 2sbc5g 44378 or2expropbilem1 47006 |
| Copyright terms: Public domain | W3C validator |