![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcbidv | Structured version Visualization version GIF version |
Description: Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) Drop ax-12 2178. (Revised by GG, 1-Dec-2023.) |
Ref | Expression |
---|---|
sbcbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
sbcbidv | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2741 | . 2 ⊢ (𝜑 → 𝐴 = 𝐴) | |
2 | sbcbidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | sbceqbid 3811 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 [wsbc 3804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-sbc 3805 |
This theorem is referenced by: sbcbii 3865 csbeq2dv 3928 csbied 3959 2nreu 4467 opelopabsb 5549 opelopabgf 5559 opelopabf 5564 sbcfng 6744 sbcfg 6745 fmptsnd 7203 frpoins3xpg 8181 frpoins3xp3g 8182 wrd2ind 14771 islmod 20884 elmptrab 23856 f1od2 32735 isomnd 33051 isorng 33294 indexa 37693 sdclem2 37702 sdclem1 37703 fdc 37705 sbcalf 38074 sbcexf 38075 hdmap1ffval 41752 hdmap1fval 41753 hdmapffval 41783 hdmapfval 41784 hgmapffval 41842 hgmapfval 41843 f1o2d2 42228 rexrabdioph 42750 rexfrabdioph 42751 2rexfrabdioph 42752 3rexfrabdioph 42753 4rexfrabdioph 42754 6rexfrabdioph 42755 7rexfrabdioph 42756 2sbc6g 44384 2sbc5g 44385 or2expropbilem1 46947 |
Copyright terms: Public domain | W3C validator |