| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcbidv | Structured version Visualization version GIF version | ||
| Description: Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) Drop ax-12 2178. (Revised by GG, 1-Dec-2023.) |
| Ref | Expression |
|---|---|
| sbcbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| sbcbidv | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2730 | . 2 ⊢ (𝜑 → 𝐴 = 𝐴) | |
| 2 | sbcbidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | sbceqbid 3749 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 [wsbc 3742 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3743 |
| This theorem is referenced by: sbcbii 3799 csbeq2dv 3858 csbied 3887 2nreu 4395 opelopabsb 5473 opelopabgf 5483 opelopabf 5488 sbcfng 6649 sbcfg 6650 fmptsnd 7105 frpoins3xpg 8073 frpoins3xp3g 8074 wrd2ind 14629 isomnd 20002 isorng 20746 islmod 20767 elmptrab 23712 f1od2 32663 indexa 37713 sdclem2 37722 sdclem1 37723 fdc 37725 sbcalf 38094 sbcexf 38095 hdmap1ffval 41774 hdmap1fval 41775 hdmapffval 41805 hdmapfval 41806 hgmapffval 41864 hgmapfval 41865 f1o2d2 42206 rexrabdioph 42767 rexfrabdioph 42768 2rexfrabdioph 42769 3rexfrabdioph 42770 4rexfrabdioph 42771 6rexfrabdioph 42772 7rexfrabdioph 42773 2sbc6g 44388 2sbc5g 44389 or2expropbilem1 47016 |
| Copyright terms: Public domain | W3C validator |