| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcbidv | Structured version Visualization version GIF version | ||
| Description: Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.) Drop ax-12 2178. (Revised by GG, 1-Dec-2023.) |
| Ref | Expression |
|---|---|
| sbcbidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| sbcbidv | ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2731 | . 2 ⊢ (𝜑 → 𝐴 = 𝐴) | |
| 2 | sbcbidv.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | sbceqbid 3763 | 1 ⊢ (𝜑 → ([𝐴 / 𝑥]𝜓 ↔ [𝐴 / 𝑥]𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 [wsbc 3756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-sbc 3757 |
| This theorem is referenced by: sbcbii 3813 csbeq2dv 3872 csbied 3901 2nreu 4410 opelopabsb 5493 opelopabgf 5503 opelopabf 5508 sbcfng 6688 sbcfg 6689 fmptsnd 7146 frpoins3xpg 8122 frpoins3xp3g 8123 wrd2ind 14695 islmod 20777 elmptrab 23721 f1od2 32651 isomnd 33022 isorng 33284 indexa 37734 sdclem2 37743 sdclem1 37744 fdc 37746 sbcalf 38115 sbcexf 38116 hdmap1ffval 41796 hdmap1fval 41797 hdmapffval 41827 hdmapfval 41828 hgmapffval 41886 hgmapfval 41887 f1o2d2 42228 rexrabdioph 42789 rexfrabdioph 42790 2rexfrabdioph 42791 3rexfrabdioph 42792 4rexfrabdioph 42793 6rexfrabdioph 42794 7rexfrabdioph 42795 2sbc6g 44411 2sbc5g 44412 or2expropbilem1 47037 |
| Copyright terms: Public domain | W3C validator |