Proof of Theorem 3elpr2eq
| Step | Hyp | Ref
| Expression |
| 1 | | elpri 4648 |
. . 3
⊢ (𝑋 ∈ {𝐴, 𝐵} → (𝑋 = 𝐴 ∨ 𝑋 = 𝐵)) |
| 2 | | elpri 4648 |
. . 3
⊢ (𝑌 ∈ {𝐴, 𝐵} → (𝑌 = 𝐴 ∨ 𝑌 = 𝐵)) |
| 3 | | elpri 4648 |
. . 3
⊢ (𝑍 ∈ {𝐴, 𝐵} → (𝑍 = 𝐴 ∨ 𝑍 = 𝐵)) |
| 4 | | eqtr3 2762 |
. . . . . . . . . . 11
⊢ ((𝑍 = 𝐴 ∧ 𝑋 = 𝐴) → 𝑍 = 𝑋) |
| 5 | | eqneqall 2950 |
. . . . . . . . . . 11
⊢ (𝑍 = 𝑋 → (𝑍 ≠ 𝑋 → 𝑌 = 𝑍)) |
| 6 | 4, 5 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑍 = 𝐴 ∧ 𝑋 = 𝐴) → (𝑍 ≠ 𝑋 → 𝑌 = 𝑍)) |
| 7 | 6 | adantld 490 |
. . . . . . . . 9
⊢ ((𝑍 = 𝐴 ∧ 𝑋 = 𝐴) → ((𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋) → 𝑌 = 𝑍)) |
| 8 | 7 | ex 412 |
. . . . . . . 8
⊢ (𝑍 = 𝐴 → (𝑋 = 𝐴 → ((𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋) → 𝑌 = 𝑍))) |
| 9 | 8 | a1d 25 |
. . . . . . 7
⊢ (𝑍 = 𝐴 → ((𝑌 = 𝐴 ∨ 𝑌 = 𝐵) → (𝑋 = 𝐴 → ((𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋) → 𝑌 = 𝑍)))) |
| 10 | | eqtr3 2762 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 𝐴 ∧ 𝑋 = 𝐴) → 𝑌 = 𝑋) |
| 11 | | eqneqall 2950 |
. . . . . . . . . . . . 13
⊢ (𝑌 = 𝑋 → (𝑌 ≠ 𝑋 → (𝑍 ≠ 𝑋 → 𝑌 = 𝑍))) |
| 12 | 10, 11 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑌 = 𝐴 ∧ 𝑋 = 𝐴) → (𝑌 ≠ 𝑋 → (𝑍 ≠ 𝑋 → 𝑌 = 𝑍))) |
| 13 | 12 | impd 410 |
. . . . . . . . . . 11
⊢ ((𝑌 = 𝐴 ∧ 𝑋 = 𝐴) → ((𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋) → 𝑌 = 𝑍)) |
| 14 | 13 | ex 412 |
. . . . . . . . . 10
⊢ (𝑌 = 𝐴 → (𝑋 = 𝐴 → ((𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋) → 𝑌 = 𝑍))) |
| 15 | 14 | a1d 25 |
. . . . . . . . 9
⊢ (𝑌 = 𝐴 → (𝑍 = 𝐵 → (𝑋 = 𝐴 → ((𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋) → 𝑌 = 𝑍)))) |
| 16 | | eqtr3 2762 |
. . . . . . . . . . 11
⊢ ((𝑌 = 𝐵 ∧ 𝑍 = 𝐵) → 𝑌 = 𝑍) |
| 17 | 16 | 2a1d 26 |
. . . . . . . . . 10
⊢ ((𝑌 = 𝐵 ∧ 𝑍 = 𝐵) → (𝑋 = 𝐴 → ((𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋) → 𝑌 = 𝑍))) |
| 18 | 17 | ex 412 |
. . . . . . . . 9
⊢ (𝑌 = 𝐵 → (𝑍 = 𝐵 → (𝑋 = 𝐴 → ((𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋) → 𝑌 = 𝑍)))) |
| 19 | 15, 18 | jaoi 857 |
. . . . . . . 8
⊢ ((𝑌 = 𝐴 ∨ 𝑌 = 𝐵) → (𝑍 = 𝐵 → (𝑋 = 𝐴 → ((𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋) → 𝑌 = 𝑍)))) |
| 20 | 19 | com12 32 |
. . . . . . 7
⊢ (𝑍 = 𝐵 → ((𝑌 = 𝐴 ∨ 𝑌 = 𝐵) → (𝑋 = 𝐴 → ((𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋) → 𝑌 = 𝑍)))) |
| 21 | 9, 20 | jaoi 857 |
. . . . . 6
⊢ ((𝑍 = 𝐴 ∨ 𝑍 = 𝐵) → ((𝑌 = 𝐴 ∨ 𝑌 = 𝐵) → (𝑋 = 𝐴 → ((𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋) → 𝑌 = 𝑍)))) |
| 22 | 21 | com13 88 |
. . . . 5
⊢ (𝑋 = 𝐴 → ((𝑌 = 𝐴 ∨ 𝑌 = 𝐵) → ((𝑍 = 𝐴 ∨ 𝑍 = 𝐵) → ((𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋) → 𝑌 = 𝑍)))) |
| 23 | | eqtr3 2762 |
. . . . . . . . . . 11
⊢ ((𝑌 = 𝐴 ∧ 𝑍 = 𝐴) → 𝑌 = 𝑍) |
| 24 | 23 | 2a1d 26 |
. . . . . . . . . 10
⊢ ((𝑌 = 𝐴 ∧ 𝑍 = 𝐴) → (𝑋 = 𝐵 → ((𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋) → 𝑌 = 𝑍))) |
| 25 | 24 | ex 412 |
. . . . . . . . 9
⊢ (𝑌 = 𝐴 → (𝑍 = 𝐴 → (𝑋 = 𝐵 → ((𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋) → 𝑌 = 𝑍)))) |
| 26 | | eqtr3 2762 |
. . . . . . . . . . . . 13
⊢ ((𝑌 = 𝐵 ∧ 𝑋 = 𝐵) → 𝑌 = 𝑋) |
| 27 | 26, 11 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑌 = 𝐵 ∧ 𝑋 = 𝐵) → (𝑌 ≠ 𝑋 → (𝑍 ≠ 𝑋 → 𝑌 = 𝑍))) |
| 28 | 27 | impd 410 |
. . . . . . . . . . 11
⊢ ((𝑌 = 𝐵 ∧ 𝑋 = 𝐵) → ((𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋) → 𝑌 = 𝑍)) |
| 29 | 28 | ex 412 |
. . . . . . . . . 10
⊢ (𝑌 = 𝐵 → (𝑋 = 𝐵 → ((𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋) → 𝑌 = 𝑍))) |
| 30 | 29 | a1d 25 |
. . . . . . . . 9
⊢ (𝑌 = 𝐵 → (𝑍 = 𝐴 → (𝑋 = 𝐵 → ((𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋) → 𝑌 = 𝑍)))) |
| 31 | 25, 30 | jaoi 857 |
. . . . . . . 8
⊢ ((𝑌 = 𝐴 ∨ 𝑌 = 𝐵) → (𝑍 = 𝐴 → (𝑋 = 𝐵 → ((𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋) → 𝑌 = 𝑍)))) |
| 32 | 31 | com12 32 |
. . . . . . 7
⊢ (𝑍 = 𝐴 → ((𝑌 = 𝐴 ∨ 𝑌 = 𝐵) → (𝑋 = 𝐵 → ((𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋) → 𝑌 = 𝑍)))) |
| 33 | | eqtr3 2762 |
. . . . . . . . . . 11
⊢ ((𝑍 = 𝐵 ∧ 𝑋 = 𝐵) → 𝑍 = 𝑋) |
| 34 | 33, 5 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑍 = 𝐵 ∧ 𝑋 = 𝐵) → (𝑍 ≠ 𝑋 → 𝑌 = 𝑍)) |
| 35 | 34 | adantld 490 |
. . . . . . . . 9
⊢ ((𝑍 = 𝐵 ∧ 𝑋 = 𝐵) → ((𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋) → 𝑌 = 𝑍)) |
| 36 | 35 | ex 412 |
. . . . . . . 8
⊢ (𝑍 = 𝐵 → (𝑋 = 𝐵 → ((𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋) → 𝑌 = 𝑍))) |
| 37 | 36 | a1d 25 |
. . . . . . 7
⊢ (𝑍 = 𝐵 → ((𝑌 = 𝐴 ∨ 𝑌 = 𝐵) → (𝑋 = 𝐵 → ((𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋) → 𝑌 = 𝑍)))) |
| 38 | 32, 37 | jaoi 857 |
. . . . . 6
⊢ ((𝑍 = 𝐴 ∨ 𝑍 = 𝐵) → ((𝑌 = 𝐴 ∨ 𝑌 = 𝐵) → (𝑋 = 𝐵 → ((𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋) → 𝑌 = 𝑍)))) |
| 39 | 38 | com13 88 |
. . . . 5
⊢ (𝑋 = 𝐵 → ((𝑌 = 𝐴 ∨ 𝑌 = 𝐵) → ((𝑍 = 𝐴 ∨ 𝑍 = 𝐵) → ((𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋) → 𝑌 = 𝑍)))) |
| 40 | 22, 39 | jaoi 857 |
. . . 4
⊢ ((𝑋 = 𝐴 ∨ 𝑋 = 𝐵) → ((𝑌 = 𝐴 ∨ 𝑌 = 𝐵) → ((𝑍 = 𝐴 ∨ 𝑍 = 𝐵) → ((𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋) → 𝑌 = 𝑍)))) |
| 41 | 40 | 3imp 1110 |
. . 3
⊢ (((𝑋 = 𝐴 ∨ 𝑋 = 𝐵) ∧ (𝑌 = 𝐴 ∨ 𝑌 = 𝐵) ∧ (𝑍 = 𝐴 ∨ 𝑍 = 𝐵)) → ((𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋) → 𝑌 = 𝑍)) |
| 42 | 1, 2, 3, 41 | syl3an 1160 |
. 2
⊢ ((𝑋 ∈ {𝐴, 𝐵} ∧ 𝑌 ∈ {𝐴, 𝐵} ∧ 𝑍 ∈ {𝐴, 𝐵}) → ((𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋) → 𝑌 = 𝑍)) |
| 43 | 42 | imp 406 |
1
⊢ (((𝑋 ∈ {𝐴, 𝐵} ∧ 𝑌 ∈ {𝐴, 𝐵} ∧ 𝑍 ∈ {𝐴, 𝐵}) ∧ (𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋)) → 𝑌 = 𝑍) |