Step | Hyp | Ref
| Expression |
1 | | diffi 8906 |
. . . . . . 7
⊢ (𝑉 ∈ Fin → (𝑉 ∖ {𝑁}) ∈ Fin) |
2 | 1 | adantr 484 |
. . . . . 6
⊢ ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → (𝑉 ∖ {𝑁}) ∈ Fin) |
3 | 2 | 3ad2ant2 1136 |
. . . . 5
⊢ ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) → (𝑉 ∖ {𝑁}) ∈ Fin) |
4 | | dmfi 8954 |
. . . . . . . . 9
⊢ (𝐸 ∈ Fin → dom 𝐸 ∈ Fin) |
5 | | rabfi 8900 |
. . . . . . . . 9
⊢ (dom
𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∈ Fin) |
6 | 4, 5 | syl 17 |
. . . . . . . 8
⊢ (𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∈ Fin) |
7 | 6 | adantl 485 |
. . . . . . 7
⊢ ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∈ Fin) |
8 | 7 | 3ad2ant2 1136 |
. . . . . 6
⊢ ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) → {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∈ Fin) |
9 | 8 | adantr 484 |
. . . . 5
⊢ (((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∈ Fin) |
10 | | notnotb 318 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ (𝐸‘𝑖) ↔ ¬ ¬ 𝑁 ∈ (𝐸‘𝑖)) |
11 | | notnotb 318 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 ∈ (𝐸‘𝑖) ↔ ¬ ¬ 𝑣 ∈ (𝐸‘𝑖)) |
12 | | upgruhgr 27193 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐺 ∈ UPGraph → 𝐺 ∈
UHGraph) |
13 | | edglnl.e |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 𝐸 = (iEdg‘𝐺) |
14 | 13 | uhgrfun 27157 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
15 | 12, 14 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐺 ∈ UPGraph → Fun 𝐸) |
16 | 13 | iedgedg 27141 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((Fun
𝐸 ∧ 𝑖 ∈ dom 𝐸) → (𝐸‘𝑖) ∈ (Edg‘𝐺)) |
17 | 15, 16 | sylan 583 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐺 ∈ UPGraph ∧ 𝑖 ∈ dom 𝐸) → (𝐸‘𝑖) ∈ (Edg‘𝐺)) |
18 | | edglnl.v |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ 𝑉 = (Vtx‘𝐺) |
19 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
20 | 18, 19 | upgredg 27228 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐺 ∈ UPGraph ∧ (𝐸‘𝑖) ∈ (Edg‘𝐺)) → ∃𝑚 ∈ 𝑉 ∃𝑛 ∈ 𝑉 (𝐸‘𝑖) = {𝑚, 𝑛}) |
21 | 17, 20 | syldan 594 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐺 ∈ UPGraph ∧ 𝑖 ∈ dom 𝐸) → ∃𝑚 ∈ 𝑉 ∃𝑛 ∈ 𝑉 (𝐸‘𝑖) = {𝑚, 𝑛}) |
22 | 21 | ex 416 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐺 ∈ UPGraph → (𝑖 ∈ dom 𝐸 → ∃𝑚 ∈ 𝑉 ∃𝑛 ∈ 𝑉 (𝐸‘𝑖) = {𝑚, 𝑛})) |
23 | 22 | 3ad2ant1 1135 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) → (𝑖 ∈ dom 𝐸 → ∃𝑚 ∈ 𝑉 ∃𝑛 ∈ 𝑉 (𝐸‘𝑖) = {𝑚, 𝑛})) |
24 | 23 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) → (𝑖 ∈ dom 𝐸 → ∃𝑚 ∈ 𝑉 ∃𝑛 ∈ 𝑉 (𝐸‘𝑖) = {𝑚, 𝑛})) |
25 | 24 | adantr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) ∧ ¬ 𝑣 = 𝑤) → (𝑖 ∈ dom 𝐸 → ∃𝑚 ∈ 𝑉 ∃𝑛 ∈ 𝑉 (𝐸‘𝑖) = {𝑚, 𝑛})) |
26 | 25 | imp 410 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐺 ∈
UPGraph ∧ (𝑉 ∈ Fin
∧ 𝐸 ∈ Fin) ∧
𝑁 ∈ 𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) ∧ ¬ 𝑣 = 𝑤) ∧ 𝑖 ∈ dom 𝐸) → ∃𝑚 ∈ 𝑉 ∃𝑛 ∈ 𝑉 (𝐸‘𝑖) = {𝑚, 𝑛}) |
27 | | eldifsni 4703 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) → 𝑣 ≠ 𝑁) |
28 | | eldifsni 4703 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤 ∈ (𝑉 ∖ {𝑁}) → 𝑤 ≠ 𝑁) |
29 | | 3elpr2eq 4818 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (((𝑁 ∈ {𝑚, 𝑛} ∧ 𝑣 ∈ {𝑚, 𝑛} ∧ 𝑤 ∈ {𝑚, 𝑛}) ∧ (𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁)) → 𝑣 = 𝑤) |
30 | 29 | expcom 417 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁) → ((𝑁 ∈ {𝑚, 𝑛} ∧ 𝑣 ∈ {𝑚, 𝑛} ∧ 𝑤 ∈ {𝑚, 𝑛}) → 𝑣 = 𝑤)) |
31 | 30 | 3expd 1355 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁) → (𝑁 ∈ {𝑚, 𝑛} → (𝑣 ∈ {𝑚, 𝑛} → (𝑤 ∈ {𝑚, 𝑛} → 𝑣 = 𝑤)))) |
32 | 31 | com23 86 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁) → (𝑣 ∈ {𝑚, 𝑛} → (𝑁 ∈ {𝑚, 𝑛} → (𝑤 ∈ {𝑚, 𝑛} → 𝑣 = 𝑤)))) |
33 | 32 | 3imp 1113 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁) ∧ 𝑣 ∈ {𝑚, 𝑛} ∧ 𝑁 ∈ {𝑚, 𝑛}) → (𝑤 ∈ {𝑚, 𝑛} → 𝑣 = 𝑤)) |
34 | 33 | con3d 155 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁) ∧ 𝑣 ∈ {𝑚, 𝑛} ∧ 𝑁 ∈ {𝑚, 𝑛}) → (¬ 𝑣 = 𝑤 → ¬ 𝑤 ∈ {𝑚, 𝑛})) |
35 | 34 | 3exp 1121 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁) → (𝑣 ∈ {𝑚, 𝑛} → (𝑁 ∈ {𝑚, 𝑛} → (¬ 𝑣 = 𝑤 → ¬ 𝑤 ∈ {𝑚, 𝑛})))) |
36 | 35 | com24 95 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁) → (¬ 𝑣 = 𝑤 → (𝑁 ∈ {𝑚, 𝑛} → (𝑣 ∈ {𝑚, 𝑛} → ¬ 𝑤 ∈ {𝑚, 𝑛})))) |
37 | 36 | imp 410 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁) ∧ ¬ 𝑣 = 𝑤) → (𝑁 ∈ {𝑚, 𝑛} → (𝑣 ∈ {𝑚, 𝑛} → ¬ 𝑤 ∈ {𝑚, 𝑛}))) |
38 | | eleq2 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐸‘𝑖) = {𝑚, 𝑛} → (𝑁 ∈ (𝐸‘𝑖) ↔ 𝑁 ∈ {𝑚, 𝑛})) |
39 | | eleq2 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐸‘𝑖) = {𝑚, 𝑛} → (𝑣 ∈ (𝐸‘𝑖) ↔ 𝑣 ∈ {𝑚, 𝑛})) |
40 | | eleq2 2826 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝐸‘𝑖) = {𝑚, 𝑛} → (𝑤 ∈ (𝐸‘𝑖) ↔ 𝑤 ∈ {𝑚, 𝑛})) |
41 | 40 | notbid 321 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐸‘𝑖) = {𝑚, 𝑛} → (¬ 𝑤 ∈ (𝐸‘𝑖) ↔ ¬ 𝑤 ∈ {𝑚, 𝑛})) |
42 | 39, 41 | imbi12d 348 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝐸‘𝑖) = {𝑚, 𝑛} → ((𝑣 ∈ (𝐸‘𝑖) → ¬ 𝑤 ∈ (𝐸‘𝑖)) ↔ (𝑣 ∈ {𝑚, 𝑛} → ¬ 𝑤 ∈ {𝑚, 𝑛}))) |
43 | 38, 42 | imbi12d 348 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐸‘𝑖) = {𝑚, 𝑛} → ((𝑁 ∈ (𝐸‘𝑖) → (𝑣 ∈ (𝐸‘𝑖) → ¬ 𝑤 ∈ (𝐸‘𝑖))) ↔ (𝑁 ∈ {𝑚, 𝑛} → (𝑣 ∈ {𝑚, 𝑛} → ¬ 𝑤 ∈ {𝑚, 𝑛})))) |
44 | 37, 43 | syl5ibrcom 250 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁) ∧ ¬ 𝑣 = 𝑤) → ((𝐸‘𝑖) = {𝑚, 𝑛} → (𝑁 ∈ (𝐸‘𝑖) → (𝑣 ∈ (𝐸‘𝑖) → ¬ 𝑤 ∈ (𝐸‘𝑖))))) |
45 | 44 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁) ∧ ¬ 𝑣 = 𝑤) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) → ((𝐸‘𝑖) = {𝑚, 𝑛} → (𝑁 ∈ (𝐸‘𝑖) → (𝑣 ∈ (𝐸‘𝑖) → ¬ 𝑤 ∈ (𝐸‘𝑖))))) |
46 | 45 | rexlimdvva 3213 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁) ∧ ¬ 𝑣 = 𝑤) → (∃𝑚 ∈ 𝑉 ∃𝑛 ∈ 𝑉 (𝐸‘𝑖) = {𝑚, 𝑛} → (𝑁 ∈ (𝐸‘𝑖) → (𝑣 ∈ (𝐸‘𝑖) → ¬ 𝑤 ∈ (𝐸‘𝑖))))) |
47 | 46 | ex 416 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑣 ≠ 𝑁 ∧ 𝑤 ≠ 𝑁) → (¬ 𝑣 = 𝑤 → (∃𝑚 ∈ 𝑉 ∃𝑛 ∈ 𝑉 (𝐸‘𝑖) = {𝑚, 𝑛} → (𝑁 ∈ (𝐸‘𝑖) → (𝑣 ∈ (𝐸‘𝑖) → ¬ 𝑤 ∈ (𝐸‘𝑖)))))) |
48 | 27, 28, 47 | syl2an 599 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁})) → (¬ 𝑣 = 𝑤 → (∃𝑚 ∈ 𝑉 ∃𝑛 ∈ 𝑉 (𝐸‘𝑖) = {𝑚, 𝑛} → (𝑁 ∈ (𝐸‘𝑖) → (𝑣 ∈ (𝐸‘𝑖) → ¬ 𝑤 ∈ (𝐸‘𝑖)))))) |
49 | 48 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) → (¬ 𝑣 = 𝑤 → (∃𝑚 ∈ 𝑉 ∃𝑛 ∈ 𝑉 (𝐸‘𝑖) = {𝑚, 𝑛} → (𝑁 ∈ (𝐸‘𝑖) → (𝑣 ∈ (𝐸‘𝑖) → ¬ 𝑤 ∈ (𝐸‘𝑖)))))) |
50 | 49 | imp 410 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) ∧ ¬ 𝑣 = 𝑤) → (∃𝑚 ∈ 𝑉 ∃𝑛 ∈ 𝑉 (𝐸‘𝑖) = {𝑚, 𝑛} → (𝑁 ∈ (𝐸‘𝑖) → (𝑣 ∈ (𝐸‘𝑖) → ¬ 𝑤 ∈ (𝐸‘𝑖))))) |
51 | 50 | adantr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐺 ∈
UPGraph ∧ (𝑉 ∈ Fin
∧ 𝐸 ∈ Fin) ∧
𝑁 ∈ 𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) ∧ ¬ 𝑣 = 𝑤) ∧ 𝑖 ∈ dom 𝐸) → (∃𝑚 ∈ 𝑉 ∃𝑛 ∈ 𝑉 (𝐸‘𝑖) = {𝑚, 𝑛} → (𝑁 ∈ (𝐸‘𝑖) → (𝑣 ∈ (𝐸‘𝑖) → ¬ 𝑤 ∈ (𝐸‘𝑖))))) |
52 | 26, 51 | mpd 15 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐺 ∈
UPGraph ∧ (𝑉 ∈ Fin
∧ 𝐸 ∈ Fin) ∧
𝑁 ∈ 𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) ∧ ¬ 𝑣 = 𝑤) ∧ 𝑖 ∈ dom 𝐸) → (𝑁 ∈ (𝐸‘𝑖) → (𝑣 ∈ (𝐸‘𝑖) → ¬ 𝑤 ∈ (𝐸‘𝑖)))) |
53 | 52 | imp 410 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝐺 ∈
UPGraph ∧ (𝑉 ∈ Fin
∧ 𝐸 ∈ Fin) ∧
𝑁 ∈ 𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) ∧ ¬ 𝑣 = 𝑤) ∧ 𝑖 ∈ dom 𝐸) ∧ 𝑁 ∈ (𝐸‘𝑖)) → (𝑣 ∈ (𝐸‘𝑖) → ¬ 𝑤 ∈ (𝐸‘𝑖))) |
54 | 11, 53 | syl5bir 246 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝐺 ∈
UPGraph ∧ (𝑉 ∈ Fin
∧ 𝐸 ∈ Fin) ∧
𝑁 ∈ 𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) ∧ ¬ 𝑣 = 𝑤) ∧ 𝑖 ∈ dom 𝐸) ∧ 𝑁 ∈ (𝐸‘𝑖)) → (¬ ¬ 𝑣 ∈ (𝐸‘𝑖) → ¬ 𝑤 ∈ (𝐸‘𝑖))) |
55 | 54 | orrd 863 |
. . . . . . . . . . . . . . 15
⊢
((((((𝐺 ∈
UPGraph ∧ (𝑉 ∈ Fin
∧ 𝐸 ∈ Fin) ∧
𝑁 ∈ 𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) ∧ ¬ 𝑣 = 𝑤) ∧ 𝑖 ∈ dom 𝐸) ∧ 𝑁 ∈ (𝐸‘𝑖)) → (¬ 𝑣 ∈ (𝐸‘𝑖) ∨ ¬ 𝑤 ∈ (𝐸‘𝑖))) |
56 | 55 | ex 416 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈
UPGraph ∧ (𝑉 ∈ Fin
∧ 𝐸 ∈ Fin) ∧
𝑁 ∈ 𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) ∧ ¬ 𝑣 = 𝑤) ∧ 𝑖 ∈ dom 𝐸) → (𝑁 ∈ (𝐸‘𝑖) → (¬ 𝑣 ∈ (𝐸‘𝑖) ∨ ¬ 𝑤 ∈ (𝐸‘𝑖)))) |
57 | 10, 56 | syl5bir 246 |
. . . . . . . . . . . . 13
⊢
(((((𝐺 ∈
UPGraph ∧ (𝑉 ∈ Fin
∧ 𝐸 ∈ Fin) ∧
𝑁 ∈ 𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) ∧ ¬ 𝑣 = 𝑤) ∧ 𝑖 ∈ dom 𝐸) → (¬ ¬ 𝑁 ∈ (𝐸‘𝑖) → (¬ 𝑣 ∈ (𝐸‘𝑖) ∨ ¬ 𝑤 ∈ (𝐸‘𝑖)))) |
58 | 57 | orrd 863 |
. . . . . . . . . . . 12
⊢
(((((𝐺 ∈
UPGraph ∧ (𝑉 ∈ Fin
∧ 𝐸 ∈ Fin) ∧
𝑁 ∈ 𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) ∧ ¬ 𝑣 = 𝑤) ∧ 𝑖 ∈ dom 𝐸) → (¬ 𝑁 ∈ (𝐸‘𝑖) ∨ (¬ 𝑣 ∈ (𝐸‘𝑖) ∨ ¬ 𝑤 ∈ (𝐸‘𝑖)))) |
59 | | anandi 676 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ (𝐸‘𝑖) ∧ (𝑣 ∈ (𝐸‘𝑖) ∧ 𝑤 ∈ (𝐸‘𝑖))) ↔ ((𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)) ∧ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑤 ∈ (𝐸‘𝑖)))) |
60 | 59 | bicomi 227 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)) ∧ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑤 ∈ (𝐸‘𝑖))) ↔ (𝑁 ∈ (𝐸‘𝑖) ∧ (𝑣 ∈ (𝐸‘𝑖) ∧ 𝑤 ∈ (𝐸‘𝑖)))) |
61 | 60 | notbii 323 |
. . . . . . . . . . . . 13
⊢ (¬
((𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)) ∧ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑤 ∈ (𝐸‘𝑖))) ↔ ¬ (𝑁 ∈ (𝐸‘𝑖) ∧ (𝑣 ∈ (𝐸‘𝑖) ∧ 𝑤 ∈ (𝐸‘𝑖)))) |
62 | | ianor 982 |
. . . . . . . . . . . . 13
⊢ (¬
(𝑁 ∈ (𝐸‘𝑖) ∧ (𝑣 ∈ (𝐸‘𝑖) ∧ 𝑤 ∈ (𝐸‘𝑖))) ↔ (¬ 𝑁 ∈ (𝐸‘𝑖) ∨ ¬ (𝑣 ∈ (𝐸‘𝑖) ∧ 𝑤 ∈ (𝐸‘𝑖)))) |
63 | | ianor 982 |
. . . . . . . . . . . . . 14
⊢ (¬
(𝑣 ∈ (𝐸‘𝑖) ∧ 𝑤 ∈ (𝐸‘𝑖)) ↔ (¬ 𝑣 ∈ (𝐸‘𝑖) ∨ ¬ 𝑤 ∈ (𝐸‘𝑖))) |
64 | 63 | orbi2i 913 |
. . . . . . . . . . . . 13
⊢ ((¬
𝑁 ∈ (𝐸‘𝑖) ∨ ¬ (𝑣 ∈ (𝐸‘𝑖) ∧ 𝑤 ∈ (𝐸‘𝑖))) ↔ (¬ 𝑁 ∈ (𝐸‘𝑖) ∨ (¬ 𝑣 ∈ (𝐸‘𝑖) ∨ ¬ 𝑤 ∈ (𝐸‘𝑖)))) |
65 | 61, 62, 64 | 3bitri 300 |
. . . . . . . . . . . 12
⊢ (¬
((𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)) ∧ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑤 ∈ (𝐸‘𝑖))) ↔ (¬ 𝑁 ∈ (𝐸‘𝑖) ∨ (¬ 𝑣 ∈ (𝐸‘𝑖) ∨ ¬ 𝑤 ∈ (𝐸‘𝑖)))) |
66 | 58, 65 | sylibr 237 |
. . . . . . . . . . 11
⊢
(((((𝐺 ∈
UPGraph ∧ (𝑉 ∈ Fin
∧ 𝐸 ∈ Fin) ∧
𝑁 ∈ 𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) ∧ ¬ 𝑣 = 𝑤) ∧ 𝑖 ∈ dom 𝐸) → ¬ ((𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)) ∧ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑤 ∈ (𝐸‘𝑖)))) |
67 | 66 | ralrimiva 3105 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) ∧ ¬ 𝑣 = 𝑤) → ∀𝑖 ∈ dom 𝐸 ¬ ((𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)) ∧ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑤 ∈ (𝐸‘𝑖)))) |
68 | | inrab 4221 |
. . . . . . . . . . . 12
⊢ ({𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∩ {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑤 ∈ (𝐸‘𝑖))}) = {𝑖 ∈ dom 𝐸 ∣ ((𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)) ∧ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑤 ∈ (𝐸‘𝑖)))} |
69 | 68 | eqeq1i 2742 |
. . . . . . . . . . 11
⊢ (({𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∩ {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑤 ∈ (𝐸‘𝑖))}) = ∅ ↔ {𝑖 ∈ dom 𝐸 ∣ ((𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)) ∧ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑤 ∈ (𝐸‘𝑖)))} = ∅) |
70 | | rabeq0 4299 |
. . . . . . . . . . 11
⊢ ({𝑖 ∈ dom 𝐸 ∣ ((𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)) ∧ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑤 ∈ (𝐸‘𝑖)))} = ∅ ↔ ∀𝑖 ∈ dom 𝐸 ¬ ((𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)) ∧ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑤 ∈ (𝐸‘𝑖)))) |
71 | 69, 70 | bitri 278 |
. . . . . . . . . 10
⊢ (({𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∩ {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑤 ∈ (𝐸‘𝑖))}) = ∅ ↔ ∀𝑖 ∈ dom 𝐸 ¬ ((𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)) ∧ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑤 ∈ (𝐸‘𝑖)))) |
72 | 67, 71 | sylibr 237 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) ∧ ¬ 𝑣 = 𝑤) → ({𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∩ {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑤 ∈ (𝐸‘𝑖))}) = ∅) |
73 | 72 | ex 416 |
. . . . . . . 8
⊢ (((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) → (¬ 𝑣 = 𝑤 → ({𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∩ {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑤 ∈ (𝐸‘𝑖))}) = ∅)) |
74 | 73 | orrd 863 |
. . . . . . 7
⊢ (((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) ∧ (𝑣 ∈ (𝑉 ∖ {𝑁}) ∧ 𝑤 ∈ (𝑉 ∖ {𝑁}))) → (𝑣 = 𝑤 ∨ ({𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∩ {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑤 ∈ (𝐸‘𝑖))}) = ∅)) |
75 | 74 | ralrimivva 3112 |
. . . . . 6
⊢ ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})∀𝑤 ∈ (𝑉 ∖ {𝑁})(𝑣 = 𝑤 ∨ ({𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∩ {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑤 ∈ (𝐸‘𝑖))}) = ∅)) |
76 | | eleq1w 2820 |
. . . . . . . . 9
⊢ (𝑣 = 𝑤 → (𝑣 ∈ (𝐸‘𝑖) ↔ 𝑤 ∈ (𝐸‘𝑖))) |
77 | 76 | anbi2d 632 |
. . . . . . . 8
⊢ (𝑣 = 𝑤 → ((𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)) ↔ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑤 ∈ (𝐸‘𝑖)))) |
78 | 77 | rabbidv 3390 |
. . . . . . 7
⊢ (𝑣 = 𝑤 → {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} = {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑤 ∈ (𝐸‘𝑖))}) |
79 | 78 | disjor 5033 |
. . . . . 6
⊢
(Disj 𝑣
∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ↔ ∀𝑣 ∈ (𝑉 ∖ {𝑁})∀𝑤 ∈ (𝑉 ∖ {𝑁})(𝑣 = 𝑤 ∨ ({𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∩ {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑤 ∈ (𝐸‘𝑖))}) = ∅)) |
80 | 75, 79 | sylibr 237 |
. . . . 5
⊢ ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) → Disj 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))}) |
81 | 3, 9, 80 | hashiun 15386 |
. . . 4
⊢ ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) → (♯‘∪ 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))}) = Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))})) |
82 | 81 | eqcomd 2743 |
. . 3
⊢ ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))}) = (♯‘∪ 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))})) |
83 | 82 | oveq1d 7228 |
. 2
⊢ ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})) = ((♯‘∪ 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}))) |
84 | 9 | ralrimiva 3105 |
. . . 4
⊢ ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) → ∀𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∈ Fin) |
85 | | iunfi 8964 |
. . . 4
⊢ (((𝑉 ∖ {𝑁}) ∈ Fin ∧ ∀𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∈ Fin) → ∪ 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∈ Fin) |
86 | 3, 84, 85 | syl2anc 587 |
. . 3
⊢ ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) → ∪
𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∈ Fin) |
87 | | rabfi 8900 |
. . . . . 6
⊢ (dom
𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}} ∈ Fin) |
88 | 4, 87 | syl 17 |
. . . . 5
⊢ (𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}} ∈ Fin) |
89 | 88 | adantl 485 |
. . . 4
⊢ ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → {𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}} ∈ Fin) |
90 | 89 | 3ad2ant2 1136 |
. . 3
⊢ ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) → {𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}} ∈ Fin) |
91 | | fveqeq2 6726 |
. . . . . . 7
⊢ (𝑖 = 𝑗 → ((𝐸‘𝑖) = {𝑁} ↔ (𝐸‘𝑗) = {𝑁})) |
92 | 91 | elrab 3602 |
. . . . . 6
⊢ (𝑗 ∈ {𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}} ↔ (𝑗 ∈ dom 𝐸 ∧ (𝐸‘𝑗) = {𝑁})) |
93 | | eldifn 4042 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 ∈ (𝑉 ∖ {𝑁}) → ¬ 𝑣 ∈ {𝑁}) |
94 | | eleq2 2826 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐸‘𝑗) = {𝑁} → (𝑣 ∈ (𝐸‘𝑗) ↔ 𝑣 ∈ {𝑁})) |
95 | 94 | notbid 321 |
. . . . . . . . . . . . . . 15
⊢ ((𝐸‘𝑗) = {𝑁} → (¬ 𝑣 ∈ (𝐸‘𝑗) ↔ ¬ 𝑣 ∈ {𝑁})) |
96 | 93, 95 | syl5ibr 249 |
. . . . . . . . . . . . . 14
⊢ ((𝐸‘𝑗) = {𝑁} → (𝑣 ∈ (𝑉 ∖ {𝑁}) → ¬ 𝑣 ∈ (𝐸‘𝑗))) |
97 | 96 | adantl 485 |
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈ dom 𝐸 ∧ (𝐸‘𝑗) = {𝑁}) → (𝑣 ∈ (𝑉 ∖ {𝑁}) → ¬ 𝑣 ∈ (𝐸‘𝑗))) |
98 | 97 | adantl 485 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐸 ∧ (𝐸‘𝑗) = {𝑁})) → (𝑣 ∈ (𝑉 ∖ {𝑁}) → ¬ 𝑣 ∈ (𝐸‘𝑗))) |
99 | 98 | imp 410 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐸 ∧ (𝐸‘𝑗) = {𝑁})) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ¬ 𝑣 ∈ (𝐸‘𝑗)) |
100 | 99 | intnand 492 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐸 ∧ (𝐸‘𝑗) = {𝑁})) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ¬ (𝑁 ∈ (𝐸‘𝑗) ∧ 𝑣 ∈ (𝐸‘𝑗))) |
101 | 100 | intnand 492 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐸 ∧ (𝐸‘𝑗) = {𝑁})) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ¬ (𝑗 ∈ dom 𝐸 ∧ (𝑁 ∈ (𝐸‘𝑗) ∧ 𝑣 ∈ (𝐸‘𝑗)))) |
102 | 101 | ralrimiva 3105 |
. . . . . . . 8
⊢ (((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐸 ∧ (𝐸‘𝑗) = {𝑁})) → ∀𝑣 ∈ (𝑉 ∖ {𝑁}) ¬ (𝑗 ∈ dom 𝐸 ∧ (𝑁 ∈ (𝐸‘𝑗) ∧ 𝑣 ∈ (𝐸‘𝑗)))) |
103 | | eliun 4908 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ∪ 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ↔ ∃𝑣 ∈ (𝑉 ∖ {𝑁})𝑗 ∈ {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))}) |
104 | 103 | notbii 323 |
. . . . . . . . 9
⊢ (¬
𝑗 ∈ ∪ 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ↔ ¬ ∃𝑣 ∈ (𝑉 ∖ {𝑁})𝑗 ∈ {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))}) |
105 | | ralnex 3158 |
. . . . . . . . 9
⊢
(∀𝑣 ∈
(𝑉 ∖ {𝑁}) ¬ 𝑗 ∈ {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ↔ ¬ ∃𝑣 ∈ (𝑉 ∖ {𝑁})𝑗 ∈ {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))}) |
106 | | fveq2 6717 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑗 → (𝐸‘𝑖) = (𝐸‘𝑗)) |
107 | 106 | eleq2d 2823 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → (𝑁 ∈ (𝐸‘𝑖) ↔ 𝑁 ∈ (𝐸‘𝑗))) |
108 | 106 | eleq2d 2823 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → (𝑣 ∈ (𝐸‘𝑖) ↔ 𝑣 ∈ (𝐸‘𝑗))) |
109 | 107, 108 | anbi12d 634 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → ((𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖)) ↔ (𝑁 ∈ (𝐸‘𝑗) ∧ 𝑣 ∈ (𝐸‘𝑗)))) |
110 | 109 | elrab 3602 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ↔ (𝑗 ∈ dom 𝐸 ∧ (𝑁 ∈ (𝐸‘𝑗) ∧ 𝑣 ∈ (𝐸‘𝑗)))) |
111 | 110 | notbii 323 |
. . . . . . . . . 10
⊢ (¬
𝑗 ∈ {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ↔ ¬ (𝑗 ∈ dom 𝐸 ∧ (𝑁 ∈ (𝐸‘𝑗) ∧ 𝑣 ∈ (𝐸‘𝑗)))) |
112 | 111 | ralbii 3088 |
. . . . . . . . 9
⊢
(∀𝑣 ∈
(𝑉 ∖ {𝑁}) ¬ 𝑗 ∈ {𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ↔ ∀𝑣 ∈ (𝑉 ∖ {𝑁}) ¬ (𝑗 ∈ dom 𝐸 ∧ (𝑁 ∈ (𝐸‘𝑗) ∧ 𝑣 ∈ (𝐸‘𝑗)))) |
113 | 104, 105,
112 | 3bitr2i 302 |
. . . . . . . 8
⊢ (¬
𝑗 ∈ ∪ 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ↔ ∀𝑣 ∈ (𝑉 ∖ {𝑁}) ¬ (𝑗 ∈ dom 𝐸 ∧ (𝑁 ∈ (𝐸‘𝑗) ∧ 𝑣 ∈ (𝐸‘𝑗)))) |
114 | 102, 113 | sylibr 237 |
. . . . . . 7
⊢ (((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐸 ∧ (𝐸‘𝑗) = {𝑁})) → ¬ 𝑗 ∈ ∪
𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))}) |
115 | 114 | ex 416 |
. . . . . 6
⊢ ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) → ((𝑗 ∈ dom 𝐸 ∧ (𝐸‘𝑗) = {𝑁}) → ¬ 𝑗 ∈ ∪
𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))})) |
116 | 92, 115 | syl5bi 245 |
. . . . 5
⊢ ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) → (𝑗 ∈ {𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}} → ¬ 𝑗 ∈ ∪
𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))})) |
117 | 116 | ralrimiv 3104 |
. . . 4
⊢ ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) → ∀𝑗 ∈ {𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}} ¬ 𝑗 ∈ ∪
𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))}) |
118 | | disjr 4364 |
. . . 4
⊢
((∪ 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∩ {𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}) = ∅ ↔ ∀𝑗 ∈ {𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}} ¬ 𝑗 ∈ ∪
𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))}) |
119 | 117, 118 | sylibr 237 |
. . 3
⊢ ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) → (∪ 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∩ {𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}) = ∅) |
120 | | hashun 13949 |
. . 3
⊢
((∪ 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∈ Fin ∧ {𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}} ∈ Fin ∧ (∪ 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∩ {𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}) = ∅) →
(♯‘(∪ 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})) = ((♯‘∪ 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}))) |
121 | 86, 90, 119, 120 | syl3anc 1373 |
. 2
⊢ ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) → (♯‘(∪ 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})) = ((♯‘∪ 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}))) |
122 | 18, 13 | edglnl 27234 |
. . . 4
⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (∪ 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}) = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)}) |
123 | 122 | 3adant2 1133 |
. . 3
⊢ ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) → (∪ 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}}) = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)}) |
124 | 123 | fveq2d 6721 |
. 2
⊢ ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) → (♯‘(∪ 𝑣 ∈ (𝑉 ∖ {𝑁}){𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))} ∪ {𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})) = (♯‘{𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)})) |
125 | 83, 121, 124 | 3eqtr2d 2783 |
1
⊢ ((𝐺 ∈ UPGraph ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑁 ∈ 𝑉) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖 ∈ dom 𝐸 ∣ (𝑁 ∈ (𝐸‘𝑖) ∧ 𝑣 ∈ (𝐸‘𝑖))}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸‘𝑖) = {𝑁}})) = (♯‘{𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)})) |