Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj917 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 32990. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj917.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
bnj917.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj917.3 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj917.4 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
bnj917.5 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
Ref | Expression |
---|---|
bnj917 | ⊢ (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) → ∃𝑓∃𝑛∃𝑖(𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj917.1 | . . 3 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) | |
2 | bnj917.2 | . . 3 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
3 | bnj917.3 | . . 3 ⊢ 𝐷 = (ω ∖ {∅}) | |
4 | bnj917.4 | . . 3 ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} | |
5 | biid 260 | . . 3 ⊢ ((𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
6 | 1, 2, 3, 4, 5 | bnj916 32913 | . 2 ⊢ (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) → ∃𝑓∃𝑛∃𝑖(𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖))) |
7 | bnj917.5 | . . . . . 6 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
8 | bnj252 32682 | . . . . . 6 ⊢ ((𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ (𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) | |
9 | 7, 8 | bitri 274 | . . . . 5 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓))) |
10 | 9 | 3anbi1i 1156 | . . . 4 ⊢ ((𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖)) ↔ ((𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖))) |
11 | bnj253 32683 | . . . 4 ⊢ ((𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖)) ↔ ((𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖))) | |
12 | 10, 11 | bitr4i 277 | . . 3 ⊢ ((𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖)) ↔ (𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖))) |
13 | 12 | 3exbii 1852 | . 2 ⊢ (∃𝑓∃𝑛∃𝑖(𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖)) ↔ ∃𝑓∃𝑛∃𝑖(𝑛 ∈ 𝐷 ∧ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖))) |
14 | 6, 13 | sylibr 233 | 1 ⊢ (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) → ∃𝑓∃𝑛∃𝑖(𝜒 ∧ 𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∃wex 1782 ∈ wcel 2106 {cab 2715 ∀wral 3064 ∃wrex 3065 ∖ cdif 3884 ∅c0 4256 {csn 4561 ∪ ciun 4924 suc csuc 6268 Fn wfn 6428 ‘cfv 6433 ωcom 7712 ∧ w-bnj17 32665 predc-bnj14 32667 trClc-bnj18 32673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-v 3434 df-iun 4926 df-fn 6436 df-bnj17 32666 df-bnj18 32674 |
This theorem is referenced by: bnj981 32930 bnj996 32936 |
Copyright terms: Public domain | W3C validator |