MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem11 Structured version   Visualization version   GIF version

Theorem fpwwe2lem11 9908
Description: Lemma for fpwwe2 9911. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
fpwwe2.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
fpwwe2.2 (𝜑𝐴 ∈ V)
fpwwe2.3 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
fpwwe2.4 𝑋 = dom 𝑊
Assertion
Ref Expression
fpwwe2lem11 (𝜑𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋))
Distinct variable groups:   𝑦,𝑢,𝑟,𝑥,𝐹   𝑋,𝑟,𝑢,𝑥,𝑦   𝜑,𝑟,𝑢,𝑥,𝑦   𝐴,𝑟,𝑥   𝑊,𝑟,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦,𝑢)

Proof of Theorem fpwwe2lem11
Dummy variables 𝑠 𝑡 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fpwwe2.1 . . . . . 6 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 [(𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))}
21relopabi 5580 . . . . 5 Rel 𝑊
32a1i 11 . . . 4 (𝜑 → Rel 𝑊)
4 simprr 769 . . . . . . . . 9 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑠 = (𝑡 ∩ (𝑤 × 𝑤)))) → 𝑠 = (𝑡 ∩ (𝑤 × 𝑤)))
5 fpwwe2.2 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ V)
61, 5fpwwe2lem2 9900 . . . . . . . . . . . . . 14 (𝜑 → (𝑤𝑊𝑡 ↔ ((𝑤𝐴𝑡 ⊆ (𝑤 × 𝑤)) ∧ (𝑡 We 𝑤 ∧ ∀𝑦𝑤 [(𝑡 “ {𝑦}) / 𝑢](𝑢𝐹(𝑡 ∩ (𝑢 × 𝑢))) = 𝑦))))
76simprbda 499 . . . . . . . . . . . . 13 ((𝜑𝑤𝑊𝑡) → (𝑤𝐴𝑡 ⊆ (𝑤 × 𝑤)))
87simprd 496 . . . . . . . . . . . 12 ((𝜑𝑤𝑊𝑡) → 𝑡 ⊆ (𝑤 × 𝑤))
98adantrl 712 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → 𝑡 ⊆ (𝑤 × 𝑤))
109adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑠 = (𝑡 ∩ (𝑤 × 𝑤)))) → 𝑡 ⊆ (𝑤 × 𝑤))
11 df-ss 3874 . . . . . . . . . 10 (𝑡 ⊆ (𝑤 × 𝑤) ↔ (𝑡 ∩ (𝑤 × 𝑤)) = 𝑡)
1210, 11sylib 219 . . . . . . . . 9 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑠 = (𝑡 ∩ (𝑤 × 𝑤)))) → (𝑡 ∩ (𝑤 × 𝑤)) = 𝑡)
134, 12eqtrd 2831 . . . . . . . 8 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑠 = (𝑡 ∩ (𝑤 × 𝑤)))) → 𝑠 = 𝑡)
14 simprr 769 . . . . . . . . 9 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))) → 𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))
151, 5fpwwe2lem2 9900 . . . . . . . . . . . . . 14 (𝜑 → (𝑤𝑊𝑠 ↔ ((𝑤𝐴𝑠 ⊆ (𝑤 × 𝑤)) ∧ (𝑠 We 𝑤 ∧ ∀𝑦𝑤 [(𝑠 “ {𝑦}) / 𝑢](𝑢𝐹(𝑠 ∩ (𝑢 × 𝑢))) = 𝑦))))
1615simprbda 499 . . . . . . . . . . . . 13 ((𝜑𝑤𝑊𝑠) → (𝑤𝐴𝑠 ⊆ (𝑤 × 𝑤)))
1716simprd 496 . . . . . . . . . . . 12 ((𝜑𝑤𝑊𝑠) → 𝑠 ⊆ (𝑤 × 𝑤))
1817adantrr 713 . . . . . . . . . . 11 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → 𝑠 ⊆ (𝑤 × 𝑤))
1918adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))) → 𝑠 ⊆ (𝑤 × 𝑤))
20 df-ss 3874 . . . . . . . . . 10 (𝑠 ⊆ (𝑤 × 𝑤) ↔ (𝑠 ∩ (𝑤 × 𝑤)) = 𝑠)
2119, 20sylib 219 . . . . . . . . 9 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))) → (𝑠 ∩ (𝑤 × 𝑤)) = 𝑠)
2214, 21eqtr2d 2832 . . . . . . . 8 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑤𝑤𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))) → 𝑠 = 𝑡)
235adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → 𝐴 ∈ V)
24 fpwwe2.3 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
2524adantlr 711 . . . . . . . . 9 (((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) ∧ (𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴)
26 simprl 767 . . . . . . . . 9 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → 𝑤𝑊𝑠)
27 simprr 769 . . . . . . . . 9 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → 𝑤𝑊𝑡)
281, 23, 25, 26, 27fpwwe2lem10 9907 . . . . . . . 8 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → ((𝑤𝑤𝑠 = (𝑡 ∩ (𝑤 × 𝑤))) ∨ (𝑤𝑤𝑡 = (𝑠 ∩ (𝑤 × 𝑤)))))
2913, 22, 28mpjaodan 953 . . . . . . 7 ((𝜑 ∧ (𝑤𝑊𝑠𝑤𝑊𝑡)) → 𝑠 = 𝑡)
3029ex 413 . . . . . 6 (𝜑 → ((𝑤𝑊𝑠𝑤𝑊𝑡) → 𝑠 = 𝑡))
3130alrimiv 1905 . . . . 5 (𝜑 → ∀𝑡((𝑤𝑊𝑠𝑤𝑊𝑡) → 𝑠 = 𝑡))
3231alrimivv 1906 . . . 4 (𝜑 → ∀𝑤𝑠𝑡((𝑤𝑊𝑠𝑤𝑊𝑡) → 𝑠 = 𝑡))
33 dffun2 6235 . . . 4 (Fun 𝑊 ↔ (Rel 𝑊 ∧ ∀𝑤𝑠𝑡((𝑤𝑊𝑠𝑤𝑊𝑡) → 𝑠 = 𝑡)))
343, 32, 33sylanbrc 583 . . 3 (𝜑 → Fun 𝑊)
3534funfnd 6256 . 2 (𝜑𝑊 Fn dom 𝑊)
36 vex 3440 . . . . 5 𝑠 ∈ V
3736elrn 5704 . . . 4 (𝑠 ∈ ran 𝑊 ↔ ∃𝑤 𝑤𝑊𝑠)
382releldmi 5700 . . . . . . . . . . . 12 (𝑤𝑊𝑠𝑤 ∈ dom 𝑊)
3938adantl 482 . . . . . . . . . . 11 ((𝜑𝑤𝑊𝑠) → 𝑤 ∈ dom 𝑊)
40 elssuni 4774 . . . . . . . . . . 11 (𝑤 ∈ dom 𝑊𝑤 dom 𝑊)
4139, 40syl 17 . . . . . . . . . 10 ((𝜑𝑤𝑊𝑠) → 𝑤 dom 𝑊)
42 fpwwe2.4 . . . . . . . . . 10 𝑋 = dom 𝑊
4341, 42syl6sseqr 3939 . . . . . . . . 9 ((𝜑𝑤𝑊𝑠) → 𝑤𝑋)
44 xpss12 5458 . . . . . . . . 9 ((𝑤𝑋𝑤𝑋) → (𝑤 × 𝑤) ⊆ (𝑋 × 𝑋))
4543, 43, 44syl2anc 584 . . . . . . . 8 ((𝜑𝑤𝑊𝑠) → (𝑤 × 𝑤) ⊆ (𝑋 × 𝑋))
4617, 45sstrd 3899 . . . . . . 7 ((𝜑𝑤𝑊𝑠) → 𝑠 ⊆ (𝑋 × 𝑋))
4746ex 413 . . . . . 6 (𝜑 → (𝑤𝑊𝑠𝑠 ⊆ (𝑋 × 𝑋)))
48 selpw 4460 . . . . . 6 (𝑠 ∈ 𝒫 (𝑋 × 𝑋) ↔ 𝑠 ⊆ (𝑋 × 𝑋))
4947, 48syl6ibr 253 . . . . 5 (𝜑 → (𝑤𝑊𝑠𝑠 ∈ 𝒫 (𝑋 × 𝑋)))
5049exlimdv 1911 . . . 4 (𝜑 → (∃𝑤 𝑤𝑊𝑠𝑠 ∈ 𝒫 (𝑋 × 𝑋)))
5137, 50syl5bi 243 . . 3 (𝜑 → (𝑠 ∈ ran 𝑊𝑠 ∈ 𝒫 (𝑋 × 𝑋)))
5251ssrdv 3895 . 2 (𝜑 → ran 𝑊 ⊆ 𝒫 (𝑋 × 𝑋))
53 df-f 6229 . 2 (𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋) ↔ (𝑊 Fn dom 𝑊 ∧ ran 𝑊 ⊆ 𝒫 (𝑋 × 𝑋)))
5435, 52, 53sylanbrc 583 1 (𝜑𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1080  wal 1520   = wceq 1522  wex 1761  wcel 2081  wral 3105  Vcvv 3437  [wsbc 3706  cin 3858  wss 3859  𝒫 cpw 4453  {csn 4472   cuni 4745   class class class wbr 4962  {copab 5024   We wwe 5401   × cxp 5441  ccnv 5442  dom cdm 5443  ran crn 5444  cima 5446  Rel wrel 5448  Fun wfun 6219   Fn wfn 6220  wf 6221  (class class class)co 7016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-wrecs 7798  df-recs 7860  df-oi 8820
This theorem is referenced by:  fpwwe2lem13  9910  fpwwe2  9911
  Copyright terms: Public domain W3C validator