Step | Hyp | Ref
| Expression |
1 | | tpex 7575 |
. . . . . . 7
⊢ {𝐵, 𝐶, 𝐷} ∈ V |
2 | 1 | a1i 11 |
. . . . . 6
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → {𝐵, 𝐶, 𝐷} ∈ V) |
3 | | simpl 482 |
. . . . . 6
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → 𝑅 Fr 𝐴) |
4 | | df-tp 4563 |
. . . . . . 7
⊢ {𝐵, 𝐶, 𝐷} = ({𝐵, 𝐶} ∪ {𝐷}) |
5 | | simpr1 1192 |
. . . . . . . . 9
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → 𝐵 ∈ 𝐴) |
6 | | simpr2 1193 |
. . . . . . . . 9
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → 𝐶 ∈ 𝐴) |
7 | 5, 6 | prssd 4752 |
. . . . . . . 8
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → {𝐵, 𝐶} ⊆ 𝐴) |
8 | | simpr3 1194 |
. . . . . . . . 9
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → 𝐷 ∈ 𝐴) |
9 | 8 | snssd 4739 |
. . . . . . . 8
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → {𝐷} ⊆ 𝐴) |
10 | 7, 9 | unssd 4116 |
. . . . . . 7
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ({𝐵, 𝐶} ∪ {𝐷}) ⊆ 𝐴) |
11 | 4, 10 | eqsstrid 3965 |
. . . . . 6
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → {𝐵, 𝐶, 𝐷} ⊆ 𝐴) |
12 | 5 | tpnzd 4713 |
. . . . . 6
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → {𝐵, 𝐶, 𝐷} ≠ ∅) |
13 | | fri 5540 |
. . . . . 6
⊢ ((({𝐵, 𝐶, 𝐷} ∈ V ∧ 𝑅 Fr 𝐴) ∧ ({𝐵, 𝐶, 𝐷} ⊆ 𝐴 ∧ {𝐵, 𝐶, 𝐷} ≠ ∅)) → ∃𝑥 ∈ {𝐵, 𝐶, 𝐷}∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝑥) |
14 | 2, 3, 11, 12, 13 | syl22anc 835 |
. . . . 5
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ∃𝑥 ∈ {𝐵, 𝐶, 𝐷}∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝑥) |
15 | | breq2 5074 |
. . . . . . . . 9
⊢ (𝑥 = 𝐵 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝐵)) |
16 | 15 | notbid 317 |
. . . . . . . 8
⊢ (𝑥 = 𝐵 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝐵)) |
17 | 16 | ralbidv 3120 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝑥 ↔ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐵)) |
18 | | breq2 5074 |
. . . . . . . . 9
⊢ (𝑥 = 𝐶 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝐶)) |
19 | 18 | notbid 317 |
. . . . . . . 8
⊢ (𝑥 = 𝐶 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝐶)) |
20 | 19 | ralbidv 3120 |
. . . . . . 7
⊢ (𝑥 = 𝐶 → (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝑥 ↔ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐶)) |
21 | | breq2 5074 |
. . . . . . . . 9
⊢ (𝑥 = 𝐷 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝐷)) |
22 | 21 | notbid 317 |
. . . . . . . 8
⊢ (𝑥 = 𝐷 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝐷)) |
23 | 22 | ralbidv 3120 |
. . . . . . 7
⊢ (𝑥 = 𝐷 → (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝑥 ↔ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐷)) |
24 | 17, 20, 23 | rextpg 4632 |
. . . . . 6
⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (∃𝑥 ∈ {𝐵, 𝐶, 𝐷}∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝑥 ↔ (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐵 ∨ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐶 ∨ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐷))) |
25 | 24 | adantl 481 |
. . . . 5
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (∃𝑥 ∈ {𝐵, 𝐶, 𝐷}∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝑥 ↔ (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐵 ∨ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐶 ∨ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐷))) |
26 | 14, 25 | mpbid 231 |
. . . 4
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐵 ∨ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐶 ∨ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐷)) |
27 | | snsstp3 4748 |
. . . . . . 7
⊢ {𝐷} ⊆ {𝐵, 𝐶, 𝐷} |
28 | | snssg 4715 |
. . . . . . . 8
⊢ (𝐷 ∈ 𝐴 → (𝐷 ∈ {𝐵, 𝐶, 𝐷} ↔ {𝐷} ⊆ {𝐵, 𝐶, 𝐷})) |
29 | 8, 28 | syl 17 |
. . . . . . 7
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐷 ∈ {𝐵, 𝐶, 𝐷} ↔ {𝐷} ⊆ {𝐵, 𝐶, 𝐷})) |
30 | 27, 29 | mpbiri 257 |
. . . . . 6
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → 𝐷 ∈ {𝐵, 𝐶, 𝐷}) |
31 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑦 = 𝐷 → (𝑦𝑅𝐵 ↔ 𝐷𝑅𝐵)) |
32 | 31 | notbid 317 |
. . . . . . 7
⊢ (𝑦 = 𝐷 → (¬ 𝑦𝑅𝐵 ↔ ¬ 𝐷𝑅𝐵)) |
33 | 32 | rspcv 3547 |
. . . . . 6
⊢ (𝐷 ∈ {𝐵, 𝐶, 𝐷} → (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐵 → ¬ 𝐷𝑅𝐵)) |
34 | 30, 33 | syl 17 |
. . . . 5
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐵 → ¬ 𝐷𝑅𝐵)) |
35 | | snsstp1 4746 |
. . . . . . 7
⊢ {𝐵} ⊆ {𝐵, 𝐶, 𝐷} |
36 | | snssg 4715 |
. . . . . . . 8
⊢ (𝐵 ∈ 𝐴 → (𝐵 ∈ {𝐵, 𝐶, 𝐷} ↔ {𝐵} ⊆ {𝐵, 𝐶, 𝐷})) |
37 | 5, 36 | syl 17 |
. . . . . . 7
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐵 ∈ {𝐵, 𝐶, 𝐷} ↔ {𝐵} ⊆ {𝐵, 𝐶, 𝐷})) |
38 | 35, 37 | mpbiri 257 |
. . . . . 6
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → 𝐵 ∈ {𝐵, 𝐶, 𝐷}) |
39 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑦 = 𝐵 → (𝑦𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
40 | 39 | notbid 317 |
. . . . . . 7
⊢ (𝑦 = 𝐵 → (¬ 𝑦𝑅𝐶 ↔ ¬ 𝐵𝑅𝐶)) |
41 | 40 | rspcv 3547 |
. . . . . 6
⊢ (𝐵 ∈ {𝐵, 𝐶, 𝐷} → (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐶 → ¬ 𝐵𝑅𝐶)) |
42 | 38, 41 | syl 17 |
. . . . 5
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐶 → ¬ 𝐵𝑅𝐶)) |
43 | | snsstp2 4747 |
. . . . . . 7
⊢ {𝐶} ⊆ {𝐵, 𝐶, 𝐷} |
44 | | snssg 4715 |
. . . . . . . 8
⊢ (𝐶 ∈ 𝐴 → (𝐶 ∈ {𝐵, 𝐶, 𝐷} ↔ {𝐶} ⊆ {𝐵, 𝐶, 𝐷})) |
45 | 6, 44 | syl 17 |
. . . . . . 7
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 ∈ {𝐵, 𝐶, 𝐷} ↔ {𝐶} ⊆ {𝐵, 𝐶, 𝐷})) |
46 | 43, 45 | mpbiri 257 |
. . . . . 6
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → 𝐶 ∈ {𝐵, 𝐶, 𝐷}) |
47 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑦 = 𝐶 → (𝑦𝑅𝐷 ↔ 𝐶𝑅𝐷)) |
48 | 47 | notbid 317 |
. . . . . . 7
⊢ (𝑦 = 𝐶 → (¬ 𝑦𝑅𝐷 ↔ ¬ 𝐶𝑅𝐷)) |
49 | 48 | rspcv 3547 |
. . . . . 6
⊢ (𝐶 ∈ {𝐵, 𝐶, 𝐷} → (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐷 → ¬ 𝐶𝑅𝐷)) |
50 | 46, 49 | syl 17 |
. . . . 5
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐷 → ¬ 𝐶𝑅𝐷)) |
51 | 34, 42, 50 | 3orim123d 1442 |
. . . 4
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐵 ∨ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐶 ∨ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐷) → (¬ 𝐷𝑅𝐵 ∨ ¬ 𝐵𝑅𝐶 ∨ ¬ 𝐶𝑅𝐷))) |
52 | 26, 51 | mpd 15 |
. . 3
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (¬ 𝐷𝑅𝐵 ∨ ¬ 𝐵𝑅𝐶 ∨ ¬ 𝐶𝑅𝐷)) |
53 | | 3ianor 1105 |
. . 3
⊢ (¬
(𝐷𝑅𝐵 ∧ 𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷) ↔ (¬ 𝐷𝑅𝐵 ∨ ¬ 𝐵𝑅𝐶 ∨ ¬ 𝐶𝑅𝐷)) |
54 | 52, 53 | sylibr 233 |
. 2
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ¬ (𝐷𝑅𝐵 ∧ 𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷)) |
55 | | 3anrot 1098 |
. 2
⊢ ((𝐷𝑅𝐵 ∧ 𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷) ↔ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷 ∧ 𝐷𝑅𝐵)) |
56 | 54, 55 | sylnib 327 |
1
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ¬ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷 ∧ 𝐷𝑅𝐵)) |