| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | tpex 7766 | . . . . . . 7
⊢ {𝐵, 𝐶, 𝐷} ∈ V | 
| 2 | 1 | a1i 11 | . . . . . 6
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → {𝐵, 𝐶, 𝐷} ∈ V) | 
| 3 |  | simpl 482 | . . . . . 6
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → 𝑅 Fr 𝐴) | 
| 4 |  | df-tp 4631 | . . . . . . 7
⊢ {𝐵, 𝐶, 𝐷} = ({𝐵, 𝐶} ∪ {𝐷}) | 
| 5 |  | simpr1 1195 | . . . . . . . . 9
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → 𝐵 ∈ 𝐴) | 
| 6 |  | simpr2 1196 | . . . . . . . . 9
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → 𝐶 ∈ 𝐴) | 
| 7 | 5, 6 | prssd 4822 | . . . . . . . 8
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → {𝐵, 𝐶} ⊆ 𝐴) | 
| 8 |  | simpr3 1197 | . . . . . . . . 9
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → 𝐷 ∈ 𝐴) | 
| 9 | 8 | snssd 4809 | . . . . . . . 8
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → {𝐷} ⊆ 𝐴) | 
| 10 | 7, 9 | unssd 4192 | . . . . . . 7
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ({𝐵, 𝐶} ∪ {𝐷}) ⊆ 𝐴) | 
| 11 | 4, 10 | eqsstrid 4022 | . . . . . 6
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → {𝐵, 𝐶, 𝐷} ⊆ 𝐴) | 
| 12 | 5 | tpnzd 4780 | . . . . . 6
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → {𝐵, 𝐶, 𝐷} ≠ ∅) | 
| 13 |  | fri 5642 | . . . . . 6
⊢ ((({𝐵, 𝐶, 𝐷} ∈ V ∧ 𝑅 Fr 𝐴) ∧ ({𝐵, 𝐶, 𝐷} ⊆ 𝐴 ∧ {𝐵, 𝐶, 𝐷} ≠ ∅)) → ∃𝑥 ∈ {𝐵, 𝐶, 𝐷}∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝑥) | 
| 14 | 2, 3, 11, 12, 13 | syl22anc 839 | . . . . 5
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ∃𝑥 ∈ {𝐵, 𝐶, 𝐷}∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝑥) | 
| 15 |  | breq2 5147 | . . . . . . . . 9
⊢ (𝑥 = 𝐵 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝐵)) | 
| 16 | 15 | notbid 318 | . . . . . . . 8
⊢ (𝑥 = 𝐵 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝐵)) | 
| 17 | 16 | ralbidv 3178 | . . . . . . 7
⊢ (𝑥 = 𝐵 → (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝑥 ↔ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐵)) | 
| 18 |  | breq2 5147 | . . . . . . . . 9
⊢ (𝑥 = 𝐶 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝐶)) | 
| 19 | 18 | notbid 318 | . . . . . . . 8
⊢ (𝑥 = 𝐶 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝐶)) | 
| 20 | 19 | ralbidv 3178 | . . . . . . 7
⊢ (𝑥 = 𝐶 → (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝑥 ↔ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐶)) | 
| 21 |  | breq2 5147 | . . . . . . . . 9
⊢ (𝑥 = 𝐷 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝐷)) | 
| 22 | 21 | notbid 318 | . . . . . . . 8
⊢ (𝑥 = 𝐷 → (¬ 𝑦𝑅𝑥 ↔ ¬ 𝑦𝑅𝐷)) | 
| 23 | 22 | ralbidv 3178 | . . . . . . 7
⊢ (𝑥 = 𝐷 → (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝑥 ↔ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐷)) | 
| 24 | 17, 20, 23 | rextpg 4699 | . . . . . 6
⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (∃𝑥 ∈ {𝐵, 𝐶, 𝐷}∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝑥 ↔ (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐵 ∨ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐶 ∨ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐷))) | 
| 25 | 24 | adantl 481 | . . . . 5
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (∃𝑥 ∈ {𝐵, 𝐶, 𝐷}∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝑥 ↔ (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐵 ∨ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐶 ∨ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐷))) | 
| 26 | 14, 25 | mpbid 232 | . . . 4
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐵 ∨ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐶 ∨ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐷)) | 
| 27 |  | snsstp3 4818 | . . . . . . 7
⊢ {𝐷} ⊆ {𝐵, 𝐶, 𝐷} | 
| 28 |  | snssg 4783 | . . . . . . . 8
⊢ (𝐷 ∈ 𝐴 → (𝐷 ∈ {𝐵, 𝐶, 𝐷} ↔ {𝐷} ⊆ {𝐵, 𝐶, 𝐷})) | 
| 29 | 8, 28 | syl 17 | . . . . . . 7
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐷 ∈ {𝐵, 𝐶, 𝐷} ↔ {𝐷} ⊆ {𝐵, 𝐶, 𝐷})) | 
| 30 | 27, 29 | mpbiri 258 | . . . . . 6
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → 𝐷 ∈ {𝐵, 𝐶, 𝐷}) | 
| 31 |  | breq1 5146 | . . . . . . . 8
⊢ (𝑦 = 𝐷 → (𝑦𝑅𝐵 ↔ 𝐷𝑅𝐵)) | 
| 32 | 31 | notbid 318 | . . . . . . 7
⊢ (𝑦 = 𝐷 → (¬ 𝑦𝑅𝐵 ↔ ¬ 𝐷𝑅𝐵)) | 
| 33 | 32 | rspcv 3618 | . . . . . 6
⊢ (𝐷 ∈ {𝐵, 𝐶, 𝐷} → (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐵 → ¬ 𝐷𝑅𝐵)) | 
| 34 | 30, 33 | syl 17 | . . . . 5
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐵 → ¬ 𝐷𝑅𝐵)) | 
| 35 |  | snsstp1 4816 | . . . . . . 7
⊢ {𝐵} ⊆ {𝐵, 𝐶, 𝐷} | 
| 36 |  | snssg 4783 | . . . . . . . 8
⊢ (𝐵 ∈ 𝐴 → (𝐵 ∈ {𝐵, 𝐶, 𝐷} ↔ {𝐵} ⊆ {𝐵, 𝐶, 𝐷})) | 
| 37 | 5, 36 | syl 17 | . . . . . . 7
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐵 ∈ {𝐵, 𝐶, 𝐷} ↔ {𝐵} ⊆ {𝐵, 𝐶, 𝐷})) | 
| 38 | 35, 37 | mpbiri 258 | . . . . . 6
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → 𝐵 ∈ {𝐵, 𝐶, 𝐷}) | 
| 39 |  | breq1 5146 | . . . . . . . 8
⊢ (𝑦 = 𝐵 → (𝑦𝑅𝐶 ↔ 𝐵𝑅𝐶)) | 
| 40 | 39 | notbid 318 | . . . . . . 7
⊢ (𝑦 = 𝐵 → (¬ 𝑦𝑅𝐶 ↔ ¬ 𝐵𝑅𝐶)) | 
| 41 | 40 | rspcv 3618 | . . . . . 6
⊢ (𝐵 ∈ {𝐵, 𝐶, 𝐷} → (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐶 → ¬ 𝐵𝑅𝐶)) | 
| 42 | 38, 41 | syl 17 | . . . . 5
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐶 → ¬ 𝐵𝑅𝐶)) | 
| 43 |  | snsstp2 4817 | . . . . . . 7
⊢ {𝐶} ⊆ {𝐵, 𝐶, 𝐷} | 
| 44 |  | snssg 4783 | . . . . . . . 8
⊢ (𝐶 ∈ 𝐴 → (𝐶 ∈ {𝐵, 𝐶, 𝐷} ↔ {𝐶} ⊆ {𝐵, 𝐶, 𝐷})) | 
| 45 | 6, 44 | syl 17 | . . . . . . 7
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (𝐶 ∈ {𝐵, 𝐶, 𝐷} ↔ {𝐶} ⊆ {𝐵, 𝐶, 𝐷})) | 
| 46 | 43, 45 | mpbiri 258 | . . . . . 6
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → 𝐶 ∈ {𝐵, 𝐶, 𝐷}) | 
| 47 |  | breq1 5146 | . . . . . . . 8
⊢ (𝑦 = 𝐶 → (𝑦𝑅𝐷 ↔ 𝐶𝑅𝐷)) | 
| 48 | 47 | notbid 318 | . . . . . . 7
⊢ (𝑦 = 𝐶 → (¬ 𝑦𝑅𝐷 ↔ ¬ 𝐶𝑅𝐷)) | 
| 49 | 48 | rspcv 3618 | . . . . . 6
⊢ (𝐶 ∈ {𝐵, 𝐶, 𝐷} → (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐷 → ¬ 𝐶𝑅𝐷)) | 
| 50 | 46, 49 | syl 17 | . . . . 5
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐷 → ¬ 𝐶𝑅𝐷)) | 
| 51 | 34, 42, 50 | 3orim123d 1446 | . . . 4
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐵 ∨ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐶 ∨ ∀𝑦 ∈ {𝐵, 𝐶, 𝐷} ¬ 𝑦𝑅𝐷) → (¬ 𝐷𝑅𝐵 ∨ ¬ 𝐵𝑅𝐶 ∨ ¬ 𝐶𝑅𝐷))) | 
| 52 | 26, 51 | mpd 15 | . . 3
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → (¬ 𝐷𝑅𝐵 ∨ ¬ 𝐵𝑅𝐶 ∨ ¬ 𝐶𝑅𝐷)) | 
| 53 |  | 3ianor 1107 | . . 3
⊢ (¬
(𝐷𝑅𝐵 ∧ 𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷) ↔ (¬ 𝐷𝑅𝐵 ∨ ¬ 𝐵𝑅𝐶 ∨ ¬ 𝐶𝑅𝐷)) | 
| 54 | 52, 53 | sylibr 234 | . 2
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ¬ (𝐷𝑅𝐵 ∧ 𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷)) | 
| 55 |  | 3anrot 1100 | . 2
⊢ ((𝐷𝑅𝐵 ∧ 𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷) ↔ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷 ∧ 𝐷𝑅𝐵)) | 
| 56 | 54, 55 | sylnib 328 | 1
⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ¬ (𝐵𝑅𝐶 ∧ 𝐶𝑅𝐷 ∧ 𝐷𝑅𝐵)) |