Step | Hyp | Ref
| Expression |
1 | | sopo 5513 |
. . 3
⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) |
2 | | sopo 5513 |
. . 3
⊢ (𝑆 Or 𝐵 → 𝑆 Po 𝐵) |
3 | | soxp.1 |
. . . 4
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵)) ∧ ((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ ((1st ‘𝑥) = (1st ‘𝑦) ∧ (2nd
‘𝑥)𝑆(2nd ‘𝑦))))} |
4 | 3 | poxp 7940 |
. . 3
⊢ ((𝑅 Po 𝐴 ∧ 𝑆 Po 𝐵) → 𝑇 Po (𝐴 × 𝐵)) |
5 | 1, 2, 4 | syl2an 595 |
. 2
⊢ ((𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → 𝑇 Po (𝐴 × 𝐵)) |
6 | | elxp 5603 |
. . . . 5
⊢ (𝑡 ∈ (𝐴 × 𝐵) ↔ ∃𝑎∃𝑏(𝑡 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵))) |
7 | | elxp 5603 |
. . . . 5
⊢ (𝑢 ∈ (𝐴 × 𝐵) ↔ ∃𝑐∃𝑑(𝑢 = 〈𝑐, 𝑑〉 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵))) |
8 | | ioran 980 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
((𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑)) ∨ (𝑎 = 𝑐 ∧ 𝑏 = 𝑑)) ↔ (¬ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑)) ∧ ¬ (𝑎 = 𝑐 ∧ 𝑏 = 𝑑))) |
9 | | ioran 980 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (¬
(𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑)) ↔ (¬ 𝑎𝑅𝑐 ∧ ¬ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑))) |
10 | | ianor 978 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (¬
(𝑎 = 𝑐 ∧ 𝑏𝑆𝑑) ↔ (¬ 𝑎 = 𝑐 ∨ ¬ 𝑏𝑆𝑑)) |
11 | 10 | anbi2i 622 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((¬
𝑎𝑅𝑐 ∧ ¬ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑)) ↔ (¬ 𝑎𝑅𝑐 ∧ (¬ 𝑎 = 𝑐 ∨ ¬ 𝑏𝑆𝑑))) |
12 | 9, 11 | bitri 274 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
(𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑)) ↔ (¬ 𝑎𝑅𝑐 ∧ (¬ 𝑎 = 𝑐 ∨ ¬ 𝑏𝑆𝑑))) |
13 | | ianor 978 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (¬
(𝑎 = 𝑐 ∧ 𝑏 = 𝑑) ↔ (¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 = 𝑑)) |
14 | 12, 13 | anbi12i 626 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((¬
(𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑)) ∧ ¬ (𝑎 = 𝑐 ∧ 𝑏 = 𝑑)) ↔ ((¬ 𝑎𝑅𝑐 ∧ (¬ 𝑎 = 𝑐 ∨ ¬ 𝑏𝑆𝑑)) ∧ (¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 = 𝑑))) |
15 | 8, 14 | bitri 274 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
((𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑)) ∨ (𝑎 = 𝑐 ∧ 𝑏 = 𝑑)) ↔ ((¬ 𝑎𝑅𝑐 ∧ (¬ 𝑎 = 𝑐 ∨ ¬ 𝑏𝑆𝑑)) ∧ (¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 = 𝑑))) |
16 | | solin 5519 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑅 Or 𝐴 ∧ (𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) → (𝑎𝑅𝑐 ∨ 𝑎 = 𝑐 ∨ 𝑐𝑅𝑎)) |
17 | | 3orass 1088 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑎𝑅𝑐 ∨ 𝑎 = 𝑐 ∨ 𝑐𝑅𝑎) ↔ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∨ 𝑐𝑅𝑎))) |
18 | | df-or 844 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∨ 𝑐𝑅𝑎)) ↔ (¬ 𝑎𝑅𝑐 → (𝑎 = 𝑐 ∨ 𝑐𝑅𝑎))) |
19 | 17, 18 | bitri 274 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑎𝑅𝑐 ∨ 𝑎 = 𝑐 ∨ 𝑐𝑅𝑎) ↔ (¬ 𝑎𝑅𝑐 → (𝑎 = 𝑐 ∨ 𝑐𝑅𝑎))) |
20 | 16, 19 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 Or 𝐴 ∧ (𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) → (¬ 𝑎𝑅𝑐 → (𝑎 = 𝑐 ∨ 𝑐𝑅𝑎))) |
21 | | solin 5519 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑆 Or 𝐵 ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) → (𝑏𝑆𝑑 ∨ 𝑏 = 𝑑 ∨ 𝑑𝑆𝑏)) |
22 | | 3orass 1088 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑏𝑆𝑑 ∨ 𝑏 = 𝑑 ∨ 𝑑𝑆𝑏) ↔ (𝑏𝑆𝑑 ∨ (𝑏 = 𝑑 ∨ 𝑑𝑆𝑏))) |
23 | | df-or 844 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑏𝑆𝑑 ∨ (𝑏 = 𝑑 ∨ 𝑑𝑆𝑏)) ↔ (¬ 𝑏𝑆𝑑 → (𝑏 = 𝑑 ∨ 𝑑𝑆𝑏))) |
24 | 22, 23 | bitri 274 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑏𝑆𝑑 ∨ 𝑏 = 𝑑 ∨ 𝑑𝑆𝑏) ↔ (¬ 𝑏𝑆𝑑 → (𝑏 = 𝑑 ∨ 𝑑𝑆𝑏))) |
25 | 21, 24 | sylib 217 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑆 Or 𝐵 ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) → (¬ 𝑏𝑆𝑑 → (𝑏 = 𝑑 ∨ 𝑑𝑆𝑏))) |
26 | 25 | orim2d 963 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑆 Or 𝐵 ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) → ((¬ 𝑎 = 𝑐 ∨ ¬ 𝑏𝑆𝑑) → (¬ 𝑎 = 𝑐 ∨ (𝑏 = 𝑑 ∨ 𝑑𝑆𝑏)))) |
27 | 20, 26 | im2anan9 619 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 Or 𝐴 ∧ (𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) ∧ (𝑆 Or 𝐵 ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵))) → ((¬ 𝑎𝑅𝑐 ∧ (¬ 𝑎 = 𝑐 ∨ ¬ 𝑏𝑆𝑑)) → ((𝑎 = 𝑐 ∨ 𝑐𝑅𝑎) ∧ (¬ 𝑎 = 𝑐 ∨ (𝑏 = 𝑑 ∨ 𝑑𝑆𝑏))))) |
28 | | pm2.53 847 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑎 = 𝑐 ∨ 𝑐𝑅𝑎) → (¬ 𝑎 = 𝑐 → 𝑐𝑅𝑎)) |
29 | | orc 863 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑐𝑅𝑎 → (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏))) |
30 | 28, 29 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑎 = 𝑐 ∨ 𝑐𝑅𝑎) → (¬ 𝑎 = 𝑐 → (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏)))) |
31 | 30 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑎 = 𝑐 ∨ 𝑐𝑅𝑎) ∧ (¬ 𝑎 = 𝑐 ∨ (𝑏 = 𝑑 ∨ 𝑑𝑆𝑏))) → (¬ 𝑎 = 𝑐 → (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏)))) |
32 | | orel1 885 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (¬
𝑏 = 𝑑 → ((𝑏 = 𝑑 ∨ 𝑑𝑆𝑏) → 𝑑𝑆𝑏)) |
33 | 32 | orim2d 963 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (¬
𝑏 = 𝑑 → ((¬ 𝑎 = 𝑐 ∨ (𝑏 = 𝑑 ∨ 𝑑𝑆𝑏)) → (¬ 𝑎 = 𝑐 ∨ 𝑑𝑆𝑏))) |
34 | 33 | anim2d 611 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (¬
𝑏 = 𝑑 → (((𝑎 = 𝑐 ∨ 𝑐𝑅𝑎) ∧ (¬ 𝑎 = 𝑐 ∨ (𝑏 = 𝑑 ∨ 𝑑𝑆𝑏))) → ((𝑎 = 𝑐 ∨ 𝑐𝑅𝑎) ∧ (¬ 𝑎 = 𝑐 ∨ 𝑑𝑆𝑏)))) |
35 | | imor 849 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑎 = 𝑐 → 𝑑𝑆𝑏) ↔ (¬ 𝑎 = 𝑐 ∨ 𝑑𝑆𝑏)) |
36 | 35 | biimpri 227 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((¬
𝑎 = 𝑐 ∨ 𝑑𝑆𝑏) → (𝑎 = 𝑐 → 𝑑𝑆𝑏)) |
37 | 36 | com12 32 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑎 = 𝑐 → ((¬ 𝑎 = 𝑐 ∨ 𝑑𝑆𝑏) → 𝑑𝑆𝑏)) |
38 | | equcomi 2021 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑎 = 𝑐 → 𝑐 = 𝑎) |
39 | 38 | anim1i 614 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑎 = 𝑐 ∧ 𝑑𝑆𝑏) → (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏)) |
40 | 39 | olcd 870 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑎 = 𝑐 ∧ 𝑑𝑆𝑏) → (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏))) |
41 | 40 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑎 = 𝑐 → (𝑑𝑆𝑏 → (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏)))) |
42 | 37, 41 | syld 47 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑎 = 𝑐 → ((¬ 𝑎 = 𝑐 ∨ 𝑑𝑆𝑏) → (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏)))) |
43 | 29 | a1d 25 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑐𝑅𝑎 → ((¬ 𝑎 = 𝑐 ∨ 𝑑𝑆𝑏) → (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏)))) |
44 | 42, 43 | jaoi 853 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑎 = 𝑐 ∨ 𝑐𝑅𝑎) → ((¬ 𝑎 = 𝑐 ∨ 𝑑𝑆𝑏) → (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏)))) |
45 | 44 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑎 = 𝑐 ∨ 𝑐𝑅𝑎) ∧ (¬ 𝑎 = 𝑐 ∨ 𝑑𝑆𝑏)) → (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏))) |
46 | 34, 45 | syl6com 37 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑎 = 𝑐 ∨ 𝑐𝑅𝑎) ∧ (¬ 𝑎 = 𝑐 ∨ (𝑏 = 𝑑 ∨ 𝑑𝑆𝑏))) → (¬ 𝑏 = 𝑑 → (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏)))) |
47 | 31, 46 | jaod 855 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑎 = 𝑐 ∨ 𝑐𝑅𝑎) ∧ (¬ 𝑎 = 𝑐 ∨ (𝑏 = 𝑑 ∨ 𝑑𝑆𝑏))) → ((¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 = 𝑑) → (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏)))) |
48 | 27, 47 | syl6 35 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 Or 𝐴 ∧ (𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) ∧ (𝑆 Or 𝐵 ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵))) → ((¬ 𝑎𝑅𝑐 ∧ (¬ 𝑎 = 𝑐 ∨ ¬ 𝑏𝑆𝑑)) → ((¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 = 𝑑) → (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏))))) |
49 | 48 | impd 410 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑅 Or 𝐴 ∧ (𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) ∧ (𝑆 Or 𝐵 ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵))) → (((¬ 𝑎𝑅𝑐 ∧ (¬ 𝑎 = 𝑐 ∨ ¬ 𝑏𝑆𝑑)) ∧ (¬ 𝑎 = 𝑐 ∨ ¬ 𝑏 = 𝑑)) → (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏)))) |
50 | 15, 49 | syl5bi 241 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 Or 𝐴 ∧ (𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) ∧ (𝑆 Or 𝐵 ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵))) → (¬ ((𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑)) ∨ (𝑎 = 𝑐 ∧ 𝑏 = 𝑑)) → (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏)))) |
51 | | df-3or 1086 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑)) ∨ (𝑎 = 𝑐 ∧ 𝑏 = 𝑑) ∨ (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏))) ↔ (((𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑)) ∨ (𝑎 = 𝑐 ∧ 𝑏 = 𝑑)) ∨ (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏)))) |
52 | | df-or 844 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑)) ∨ (𝑎 = 𝑐 ∧ 𝑏 = 𝑑)) ∨ (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏))) ↔ (¬ ((𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑)) ∨ (𝑎 = 𝑐 ∧ 𝑏 = 𝑑)) → (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏)))) |
53 | 51, 52 | bitri 274 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑)) ∨ (𝑎 = 𝑐 ∧ 𝑏 = 𝑑) ∨ (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏))) ↔ (¬ ((𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑)) ∨ (𝑎 = 𝑐 ∧ 𝑏 = 𝑑)) → (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏)))) |
54 | 50, 53 | sylibr 233 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 Or 𝐴 ∧ (𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) ∧ (𝑆 Or 𝐵 ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵))) → ((𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑)) ∨ (𝑎 = 𝑐 ∧ 𝑏 = 𝑑) ∨ (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏)))) |
55 | | pm3.2 469 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) → ((𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑)) → (((𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑))))) |
56 | 55 | ad2ant2l 742 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 Or 𝐴 ∧ (𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) ∧ (𝑆 Or 𝐵 ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵))) → ((𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑)) → (((𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑))))) |
57 | | idd 24 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 Or 𝐴 ∧ (𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) ∧ (𝑆 Or 𝐵 ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵))) → ((𝑎 = 𝑐 ∧ 𝑏 = 𝑑) → (𝑎 = 𝑐 ∧ 𝑏 = 𝑑))) |
58 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 Or 𝐴 ∧ (𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) → (𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) |
59 | 58 | ancomd 461 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 Or 𝐴 ∧ (𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) → (𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴)) |
60 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑆 Or 𝐵 ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) → (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) |
61 | 60 | ancomd 461 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑆 Or 𝐵 ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) → (𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) |
62 | | pm3.2 469 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴) ∧ (𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏)) → (((𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴) ∧ (𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏))))) |
63 | 59, 61, 62 | syl2an 595 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 Or 𝐴 ∧ (𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) ∧ (𝑆 Or 𝐵 ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵))) → ((𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏)) → (((𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴) ∧ (𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏))))) |
64 | 56, 57, 63 | 3orim123d 1442 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 Or 𝐴 ∧ (𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) ∧ (𝑆 Or 𝐵 ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵))) → (((𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑)) ∨ (𝑎 = 𝑐 ∧ 𝑏 = 𝑑) ∨ (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏))) → ((((𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑))) ∨ (𝑎 = 𝑐 ∧ 𝑏 = 𝑑) ∨ (((𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴) ∧ (𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏)))))) |
65 | 54, 64 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 Or 𝐴 ∧ (𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴)) ∧ (𝑆 Or 𝐵 ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵))) → ((((𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑))) ∨ (𝑎 = 𝑐 ∧ 𝑏 = 𝑑) ∨ (((𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴) ∧ (𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏))))) |
66 | 65 | an4s 656 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) ∧ ((𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵))) → ((((𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑))) ∨ (𝑎 = 𝑐 ∧ 𝑏 = 𝑑) ∨ (((𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴) ∧ (𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏))))) |
67 | 66 | expcom 413 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) → ((𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → ((((𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑))) ∨ (𝑎 = 𝑐 ∧ 𝑏 = 𝑑) ∨ (((𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴) ∧ (𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏)))))) |
68 | 67 | an4s 656 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵)) → ((𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → ((((𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑))) ∨ (𝑎 = 𝑐 ∧ 𝑏 = 𝑑) ∨ (((𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴) ∧ (𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏)))))) |
69 | | breq12 5075 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑡 = 〈𝑎, 𝑏〉 ∧ 𝑢 = 〈𝑐, 𝑑〉) → (𝑡𝑇𝑢 ↔ 〈𝑎, 𝑏〉𝑇〈𝑐, 𝑑〉)) |
70 | | eqeq12 2755 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑡 = 〈𝑎, 𝑏〉 ∧ 𝑢 = 〈𝑐, 𝑑〉) → (𝑡 = 𝑢 ↔ 〈𝑎, 𝑏〉 = 〈𝑐, 𝑑〉)) |
71 | | breq12 5075 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑢 = 〈𝑐, 𝑑〉 ∧ 𝑡 = 〈𝑎, 𝑏〉) → (𝑢𝑇𝑡 ↔ 〈𝑐, 𝑑〉𝑇〈𝑎, 𝑏〉)) |
72 | 71 | ancoms 458 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑡 = 〈𝑎, 𝑏〉 ∧ 𝑢 = 〈𝑐, 𝑑〉) → (𝑢𝑇𝑡 ↔ 〈𝑐, 𝑑〉𝑇〈𝑎, 𝑏〉)) |
73 | 69, 70, 72 | 3orbi123d 1433 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑡 = 〈𝑎, 𝑏〉 ∧ 𝑢 = 〈𝑐, 𝑑〉) → ((𝑡𝑇𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢𝑇𝑡) ↔ (〈𝑎, 𝑏〉𝑇〈𝑐, 𝑑〉 ∨ 〈𝑎, 𝑏〉 = 〈𝑐, 𝑑〉 ∨ 〈𝑐, 𝑑〉𝑇〈𝑎, 𝑏〉))) |
74 | 3 | xporderlem 7939 |
. . . . . . . . . . . . . . . . 17
⊢
(〈𝑎, 𝑏〉𝑇〈𝑐, 𝑑〉 ↔ (((𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑)))) |
75 | | vex 3426 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑎 ∈ V |
76 | | vex 3426 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑏 ∈ V |
77 | 75, 76 | opth 5385 |
. . . . . . . . . . . . . . . . 17
⊢
(〈𝑎, 𝑏〉 = 〈𝑐, 𝑑〉 ↔ (𝑎 = 𝑐 ∧ 𝑏 = 𝑑)) |
78 | 3 | xporderlem 7939 |
. . . . . . . . . . . . . . . . 17
⊢
(〈𝑐, 𝑑〉𝑇〈𝑎, 𝑏〉 ↔ (((𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴) ∧ (𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏)))) |
79 | 74, 77, 78 | 3orbi123i 1154 |
. . . . . . . . . . . . . . . 16
⊢
((〈𝑎, 𝑏〉𝑇〈𝑐, 𝑑〉 ∨ 〈𝑎, 𝑏〉 = 〈𝑐, 𝑑〉 ∨ 〈𝑐, 𝑑〉𝑇〈𝑎, 𝑏〉) ↔ ((((𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑))) ∨ (𝑎 = 𝑐 ∧ 𝑏 = 𝑑) ∨ (((𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴) ∧ (𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏))))) |
80 | 73, 79 | bitrdi 286 |
. . . . . . . . . . . . . . 15
⊢ ((𝑡 = 〈𝑎, 𝑏〉 ∧ 𝑢 = 〈𝑐, 𝑑〉) → ((𝑡𝑇𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢𝑇𝑡) ↔ ((((𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑))) ∨ (𝑎 = 𝑐 ∧ 𝑏 = 𝑑) ∨ (((𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴) ∧ (𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏)))))) |
81 | 80 | biimprcd 249 |
. . . . . . . . . . . . . 14
⊢
(((((𝑎 ∈ 𝐴 ∧ 𝑐 ∈ 𝐴) ∧ (𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵)) ∧ (𝑎𝑅𝑐 ∨ (𝑎 = 𝑐 ∧ 𝑏𝑆𝑑))) ∨ (𝑎 = 𝑐 ∧ 𝑏 = 𝑑) ∨ (((𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴) ∧ (𝑑 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ (𝑐𝑅𝑎 ∨ (𝑐 = 𝑎 ∧ 𝑑𝑆𝑏)))) → ((𝑡 = 〈𝑎, 𝑏〉 ∧ 𝑢 = 〈𝑐, 𝑑〉) → (𝑡𝑇𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢𝑇𝑡))) |
82 | 68, 81 | syl6 35 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵)) → ((𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → ((𝑡 = 〈𝑎, 𝑏〉 ∧ 𝑢 = 〈𝑐, 𝑑〉) → (𝑡𝑇𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢𝑇𝑡)))) |
83 | 82 | com3r 87 |
. . . . . . . . . . . 12
⊢ ((𝑡 = 〈𝑎, 𝑏〉 ∧ 𝑢 = 〈𝑐, 𝑑〉) → (((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵)) → ((𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → (𝑡𝑇𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢𝑇𝑡)))) |
84 | 83 | imp 406 |
. . . . . . . . . . 11
⊢ (((𝑡 = 〈𝑎, 𝑏〉 ∧ 𝑢 = 〈𝑐, 𝑑〉) ∧ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵))) → ((𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → (𝑡𝑇𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢𝑇𝑡))) |
85 | 84 | an4s 656 |
. . . . . . . . . 10
⊢ (((𝑡 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ (𝑢 = 〈𝑐, 𝑑〉 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵))) → ((𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → (𝑡𝑇𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢𝑇𝑡))) |
86 | 85 | expcom 413 |
. . . . . . . . 9
⊢ ((𝑢 = 〈𝑐, 𝑑〉 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵)) → ((𝑡 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → ((𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → (𝑡𝑇𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢𝑇𝑡)))) |
87 | 86 | exlimivv 1936 |
. . . . . . . 8
⊢
(∃𝑐∃𝑑(𝑢 = 〈𝑐, 𝑑〉 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵)) → ((𝑡 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → ((𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → (𝑡𝑇𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢𝑇𝑡)))) |
88 | 87 | com12 32 |
. . . . . . 7
⊢ ((𝑡 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (∃𝑐∃𝑑(𝑢 = 〈𝑐, 𝑑〉 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵)) → ((𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → (𝑡𝑇𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢𝑇𝑡)))) |
89 | 88 | exlimivv 1936 |
. . . . . 6
⊢
(∃𝑎∃𝑏(𝑡 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) → (∃𝑐∃𝑑(𝑢 = 〈𝑐, 𝑑〉 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵)) → ((𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → (𝑡𝑇𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢𝑇𝑡)))) |
90 | 89 | imp 406 |
. . . . 5
⊢
((∃𝑎∃𝑏(𝑡 = 〈𝑎, 𝑏〉 ∧ (𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵)) ∧ ∃𝑐∃𝑑(𝑢 = 〈𝑐, 𝑑〉 ∧ (𝑐 ∈ 𝐴 ∧ 𝑑 ∈ 𝐵))) → ((𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → (𝑡𝑇𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢𝑇𝑡))) |
91 | 6, 7, 90 | syl2anb 597 |
. . . 4
⊢ ((𝑡 ∈ (𝐴 × 𝐵) ∧ 𝑢 ∈ (𝐴 × 𝐵)) → ((𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → (𝑡𝑇𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢𝑇𝑡))) |
92 | 91 | com12 32 |
. . 3
⊢ ((𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → ((𝑡 ∈ (𝐴 × 𝐵) ∧ 𝑢 ∈ (𝐴 × 𝐵)) → (𝑡𝑇𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢𝑇𝑡))) |
93 | 92 | ralrimivv 3113 |
. 2
⊢ ((𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → ∀𝑡 ∈ (𝐴 × 𝐵)∀𝑢 ∈ (𝐴 × 𝐵)(𝑡𝑇𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢𝑇𝑡)) |
94 | | df-so 5495 |
. 2
⊢ (𝑇 Or (𝐴 × 𝐵) ↔ (𝑇 Po (𝐴 × 𝐵) ∧ ∀𝑡 ∈ (𝐴 × 𝐵)∀𝑢 ∈ (𝐴 × 𝐵)(𝑡𝑇𝑢 ∨ 𝑡 = 𝑢 ∨ 𝑢𝑇𝑡))) |
95 | 5, 93, 94 | sylanbrc 582 |
1
⊢ ((𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → 𝑇 Or (𝐴 × 𝐵)) |