MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colinearalglem4 Structured version   Visualization version   GIF version

Theorem colinearalglem4 28939
Description: Lemma for colinearalg 28940. Prove a disjunction that will be needed in the final proof. (Contributed by Scott Fenton, 27-Jun-2013.)
Assertion
Ref Expression
colinearalglem4 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐾 ∈ ℝ) → (∀𝑖 ∈ (1...𝑁)((((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · (((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0))
Distinct variable groups:   𝐴,𝑖   𝐶,𝑖   𝑖,𝐾   𝑖,𝑁

Proof of Theorem colinearalglem4
StepHypRef Expression
1 relin01 11785 . . 3 (𝐾 ∈ ℝ → (𝐾 ≤ 0 ∨ (0 ≤ 𝐾𝐾 ≤ 1) ∨ 1 ≤ 𝐾))
21adantl 481 . 2 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐾 ∈ ℝ) → (𝐾 ≤ 0 ∨ (0 ≤ 𝐾𝐾 ≤ 1) ∨ 1 ≤ 𝐾))
3 fveere 28931 . . . . . . . . 9 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
43adantlr 715 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐴𝑖) ∈ ℝ)
5 fveere 28931 . . . . . . . . 9 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℝ)
65adantll 714 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → (𝐶𝑖) ∈ ℝ)
74, 6jca 511 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) → ((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ))
8 simprl 771 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → 𝐾 ∈ ℝ)
98recnd 11287 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → 𝐾 ∈ ℂ)
10 resubcl 11571 . . . . . . . . . . . . 13 (((𝐶𝑖) ∈ ℝ ∧ (𝐴𝑖) ∈ ℝ) → ((𝐶𝑖) − (𝐴𝑖)) ∈ ℝ)
1110ancoms 458 . . . . . . . . . . . 12 (((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) → ((𝐶𝑖) − (𝐴𝑖)) ∈ ℝ)
1211adantr 480 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → ((𝐶𝑖) − (𝐴𝑖)) ∈ ℝ)
1312recnd 11287 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → ((𝐶𝑖) − (𝐴𝑖)) ∈ ℂ)
149, 13, 13mulassd 11282 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) · ((𝐶𝑖) − (𝐴𝑖))) = (𝐾 · (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖)))))
158, 12remulcld 11289 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → (𝐾 · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℝ)
1615recnd 11287 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → (𝐾 · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℂ)
17 recn 11243 . . . . . . . . . . . 12 ((𝐴𝑖) ∈ ℝ → (𝐴𝑖) ∈ ℂ)
1817ad2antrr 726 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → (𝐴𝑖) ∈ ℂ)
1916, 18pncand 11619 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → (((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) = (𝐾 · ((𝐶𝑖) − (𝐴𝑖))))
2019oveq1d 7446 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → ((((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) = ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) · ((𝐶𝑖) − (𝐴𝑖))))
2113sqvald 14180 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → (((𝐶𝑖) − (𝐴𝑖))↑2) = (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))))
2221oveq2d 7447 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → (𝐾 · (((𝐶𝑖) − (𝐴𝑖))↑2)) = (𝐾 · (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖)))))
2314, 20, 223eqtr4d 2785 . . . . . . . 8 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → ((((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) = (𝐾 · (((𝐶𝑖) − (𝐴𝑖))↑2)))
24 simprr 773 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → 𝐾 ≤ 0)
2512sqge0d 14174 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → 0 ≤ (((𝐶𝑖) − (𝐴𝑖))↑2))
2624, 25jca 511 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → (𝐾 ≤ 0 ∧ 0 ≤ (((𝐶𝑖) − (𝐴𝑖))↑2)))
2726orcd 873 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → ((𝐾 ≤ 0 ∧ 0 ≤ (((𝐶𝑖) − (𝐴𝑖))↑2)) ∨ (0 ≤ 𝐾 ∧ (((𝐶𝑖) − (𝐴𝑖))↑2) ≤ 0)))
2812resqcld 14162 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → (((𝐶𝑖) − (𝐴𝑖))↑2) ∈ ℝ)
29 mulle0b 12137 . . . . . . . . . 10 ((𝐾 ∈ ℝ ∧ (((𝐶𝑖) − (𝐴𝑖))↑2) ∈ ℝ) → ((𝐾 · (((𝐶𝑖) − (𝐴𝑖))↑2)) ≤ 0 ↔ ((𝐾 ≤ 0 ∧ 0 ≤ (((𝐶𝑖) − (𝐴𝑖))↑2)) ∨ (0 ≤ 𝐾 ∧ (((𝐶𝑖) − (𝐴𝑖))↑2) ≤ 0))))
308, 28, 29syl2anc 584 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → ((𝐾 · (((𝐶𝑖) − (𝐴𝑖))↑2)) ≤ 0 ↔ ((𝐾 ≤ 0 ∧ 0 ≤ (((𝐶𝑖) − (𝐴𝑖))↑2)) ∨ (0 ≤ 𝐾 ∧ (((𝐶𝑖) − (𝐴𝑖))↑2) ≤ 0))))
3127, 30mpbird 257 . . . . . . . 8 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → (𝐾 · (((𝐶𝑖) − (𝐴𝑖))↑2)) ≤ 0)
3223, 31eqbrtrd 5170 . . . . . . 7 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → ((((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0)
337, 32sylan 580 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → ((((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0)
3433an32s 652 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0)
3534ralrimiva 3144 . . . 4 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐾 ∈ ℝ ∧ 𝐾 ≤ 0)) → ∀𝑖 ∈ (1...𝑁)((((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0)
3635expr 456 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐾 ∈ ℝ) → (𝐾 ≤ 0 → ∀𝑖 ∈ (1...𝑁)((((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0))
37 recn 11243 . . . . . . . . . . . . 13 ((𝐶𝑖) ∈ ℝ → (𝐶𝑖) ∈ ℂ)
3837ad2antlr 727 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (𝐶𝑖) ∈ ℂ)
3917ad2antrr 726 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (𝐴𝑖) ∈ ℂ)
40 simprl 771 . . . . . . . . . . . . . 14 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → 𝐾 ∈ ℝ)
4111adantr 480 . . . . . . . . . . . . . 14 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → ((𝐶𝑖) − (𝐴𝑖)) ∈ ℝ)
4240, 41remulcld 11289 . . . . . . . . . . . . 13 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (𝐾 · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℝ)
4342recnd 11287 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (𝐾 · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℂ)
4438, 39, 43sub32d 11650 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((𝐶𝑖) − (𝐴𝑖)) − (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))) = (((𝐶𝑖) − (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))) − (𝐴𝑖)))
45 ax-1cn 11211 . . . . . . . . . . . . 13 1 ∈ ℂ
4640recnd 11287 . . . . . . . . . . . . 13 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → 𝐾 ∈ ℂ)
4741recnd 11287 . . . . . . . . . . . . 13 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → ((𝐶𝑖) − (𝐴𝑖)) ∈ ℂ)
48 subdir 11695 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ 𝐾 ∈ ℂ ∧ ((𝐶𝑖) − (𝐴𝑖)) ∈ ℂ) → ((1 − 𝐾) · ((𝐶𝑖) − (𝐴𝑖))) = ((1 · ((𝐶𝑖) − (𝐴𝑖))) − (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))))
4945, 46, 47, 48mp3an2i 1465 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → ((1 − 𝐾) · ((𝐶𝑖) − (𝐴𝑖))) = ((1 · ((𝐶𝑖) − (𝐴𝑖))) − (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))))
5047mullidd 11277 . . . . . . . . . . . . 13 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (1 · ((𝐶𝑖) − (𝐴𝑖))) = ((𝐶𝑖) − (𝐴𝑖)))
5150oveq1d 7446 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → ((1 · ((𝐶𝑖) − (𝐴𝑖))) − (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))) = (((𝐶𝑖) − (𝐴𝑖)) − (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))))
5249, 51eqtr2d 2776 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((𝐶𝑖) − (𝐴𝑖)) − (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))) = ((1 − 𝐾) · ((𝐶𝑖) − (𝐴𝑖))))
5338, 43, 39subsub4d 11649 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((𝐶𝑖) − (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))) − (𝐴𝑖)) = ((𝐶𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))))
5444, 52, 533eqtr3rd 2784 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → ((𝐶𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) = ((1 − 𝐾) · ((𝐶𝑖) − (𝐴𝑖))))
5539, 39, 43sub32d 11650 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((𝐴𝑖) − (𝐴𝑖)) − (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))) = (((𝐴𝑖) − (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))) − (𝐴𝑖)))
5639subidd 11606 . . . . . . . . . . . . 13 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → ((𝐴𝑖) − (𝐴𝑖)) = 0)
5756oveq1d 7446 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((𝐴𝑖) − (𝐴𝑖)) − (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))) = (0 − (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))))
58 df-neg 11493 . . . . . . . . . . . 12 -(𝐾 · ((𝐶𝑖) − (𝐴𝑖))) = (0 − (𝐾 · ((𝐶𝑖) − (𝐴𝑖))))
5957, 58eqtr4di 2793 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((𝐴𝑖) − (𝐴𝑖)) − (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))) = -(𝐾 · ((𝐶𝑖) − (𝐴𝑖))))
6039, 43, 39subsub4d 11649 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((𝐴𝑖) − (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))) − (𝐴𝑖)) = ((𝐴𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))))
6155, 59, 603eqtr3rd 2784 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → ((𝐴𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) = -(𝐾 · ((𝐶𝑖) − (𝐴𝑖))))
6254, 61oveq12d 7449 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((𝐶𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) = (((1 − 𝐾) · ((𝐶𝑖) − (𝐴𝑖))) · -(𝐾 · ((𝐶𝑖) − (𝐴𝑖)))))
63 1re 11259 . . . . . . . . . . . . . 14 1 ∈ ℝ
64 resubcl 11571 . . . . . . . . . . . . . 14 ((1 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (1 − 𝐾) ∈ ℝ)
6563, 64mpan 690 . . . . . . . . . . . . 13 (𝐾 ∈ ℝ → (1 − 𝐾) ∈ ℝ)
6665ad2antrl 728 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (1 − 𝐾) ∈ ℝ)
6766, 41remulcld 11289 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → ((1 − 𝐾) · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℝ)
6867recnd 11287 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → ((1 − 𝐾) · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℂ)
6968, 43mulneg2d 11715 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((1 − 𝐾) · ((𝐶𝑖) − (𝐴𝑖))) · -(𝐾 · ((𝐶𝑖) − (𝐴𝑖)))) = -(((1 − 𝐾) · ((𝐶𝑖) − (𝐴𝑖))) · (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))))
7066recnd 11287 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (1 − 𝐾) ∈ ℂ)
7170, 47, 46, 47mul4d 11471 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((1 − 𝐾) · ((𝐶𝑖) − (𝐴𝑖))) · (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))) = (((1 − 𝐾) · 𝐾) · (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖)))))
7271negeqd 11500 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → -(((1 − 𝐾) · ((𝐶𝑖) − (𝐴𝑖))) · (𝐾 · ((𝐶𝑖) − (𝐴𝑖)))) = -(((1 − 𝐾) · 𝐾) · (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖)))))
7362, 69, 723eqtrd 2779 . . . . . . . 8 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((𝐶𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) = -(((1 − 𝐾) · 𝐾) · (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖)))))
7466, 40remulcld 11289 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → ((1 − 𝐾) · 𝐾) ∈ ℝ)
7541resqcld 14162 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((𝐶𝑖) − (𝐴𝑖))↑2) ∈ ℝ)
76 simpl 482 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1)) → 𝐾 ∈ ℝ)
7763, 76, 64sylancr 587 . . . . . . . . . . . . 13 ((𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1)) → (1 − 𝐾) ∈ ℝ)
78 subge0 11774 . . . . . . . . . . . . . . . 16 ((1 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ (1 − 𝐾) ↔ 𝐾 ≤ 1))
7963, 78mpan 690 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℝ → (0 ≤ (1 − 𝐾) ↔ 𝐾 ≤ 1))
8079biimpar 477 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℝ ∧ 𝐾 ≤ 1) → 0 ≤ (1 − 𝐾))
8180adantrl 716 . . . . . . . . . . . . 13 ((𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1)) → 0 ≤ (1 − 𝐾))
82 simprl 771 . . . . . . . . . . . . 13 ((𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1)) → 0 ≤ 𝐾)
8377, 76, 81, 82mulge0d 11838 . . . . . . . . . . . 12 ((𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1)) → 0 ≤ ((1 − 𝐾) · 𝐾))
8483adantl 481 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → 0 ≤ ((1 − 𝐾) · 𝐾))
8541sqge0d 14174 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → 0 ≤ (((𝐶𝑖) − (𝐴𝑖))↑2))
8674, 75, 84, 85mulge0d 11838 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → 0 ≤ (((1 − 𝐾) · 𝐾) · (((𝐶𝑖) − (𝐴𝑖))↑2)))
8747sqvald 14180 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((𝐶𝑖) − (𝐴𝑖))↑2) = (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))))
8887oveq2d 7447 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((1 − 𝐾) · 𝐾) · (((𝐶𝑖) − (𝐴𝑖))↑2)) = (((1 − 𝐾) · 𝐾) · (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖)))))
8986, 88breqtrd 5174 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → 0 ≤ (((1 − 𝐾) · 𝐾) · (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖)))))
9041, 41remulcld 11289 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℝ)
9174, 90remulcld 11289 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((1 − 𝐾) · 𝐾) · (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖)))) ∈ ℝ)
9291le0neg2d 11833 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (0 ≤ (((1 − 𝐾) · 𝐾) · (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖)))) ↔ -(((1 − 𝐾) · 𝐾) · (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖)))) ≤ 0))
9389, 92mpbid 232 . . . . . . . 8 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → -(((1 − 𝐾) · 𝐾) · (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖)))) ≤ 0)
9473, 93eqbrtrd 5170 . . . . . . 7 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((𝐶𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0)
957, 94sylan 580 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → (((𝐶𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0)
9695an32s 652 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐶𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0)
9796ralrimiva 3144 . . . 4 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐾 ∈ ℝ ∧ (0 ≤ 𝐾𝐾 ≤ 1))) → ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0)
9897expr 456 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐾 ∈ ℝ) → ((0 ≤ 𝐾𝐾 ≤ 1) → ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0))
9937ad2antlr 727 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (𝐶𝑖) ∈ ℂ)
10017ad2antrr 726 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (𝐴𝑖) ∈ ℂ)
10199, 100negsubdi2d 11634 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → -((𝐶𝑖) − (𝐴𝑖)) = ((𝐴𝑖) − (𝐶𝑖)))
102101oveq1d 7446 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (-((𝐶𝑖) − (𝐴𝑖)) · ((𝐾 − 1) · ((𝐶𝑖) − (𝐴𝑖)))) = (((𝐴𝑖) − (𝐶𝑖)) · ((𝐾 − 1) · ((𝐶𝑖) − (𝐴𝑖)))))
103 simplr 769 . . . . . . . . . . . . 13 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (𝐶𝑖) ∈ ℝ)
104 simpll 767 . . . . . . . . . . . . 13 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (𝐴𝑖) ∈ ℝ)
105103, 104, 10syl2anc 584 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → ((𝐶𝑖) − (𝐴𝑖)) ∈ ℝ)
106105recnd 11287 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → ((𝐶𝑖) − (𝐴𝑖)) ∈ ℂ)
107 peano2rem 11574 . . . . . . . . . . . . . 14 (𝐾 ∈ ℝ → (𝐾 − 1) ∈ ℝ)
108107ad2antrl 728 . . . . . . . . . . . . 13 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (𝐾 − 1) ∈ ℝ)
109108, 105remulcld 11289 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → ((𝐾 − 1) · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℝ)
110109recnd 11287 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → ((𝐾 − 1) · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℂ)
111106, 110mulneg1d 11714 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (-((𝐶𝑖) − (𝐴𝑖)) · ((𝐾 − 1) · ((𝐶𝑖) − (𝐴𝑖)))) = -(((𝐶𝑖) − (𝐴𝑖)) · ((𝐾 − 1) · ((𝐶𝑖) − (𝐴𝑖)))))
112108recnd 11287 . . . . . . . . . . . . 13 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (𝐾 − 1) ∈ ℂ)
113106, 112, 106mul12d 11468 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (((𝐶𝑖) − (𝐴𝑖)) · ((𝐾 − 1) · ((𝐶𝑖) − (𝐴𝑖)))) = ((𝐾 − 1) · (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖)))))
114106sqvald 14180 . . . . . . . . . . . . 13 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (((𝐶𝑖) − (𝐴𝑖))↑2) = (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))))
115114oveq2d 7447 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → ((𝐾 − 1) · (((𝐶𝑖) − (𝐴𝑖))↑2)) = ((𝐾 − 1) · (((𝐶𝑖) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖)))))
116113, 115eqtr4d 2778 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (((𝐶𝑖) − (𝐴𝑖)) · ((𝐾 − 1) · ((𝐶𝑖) − (𝐴𝑖)))) = ((𝐾 − 1) · (((𝐶𝑖) − (𝐴𝑖))↑2)))
117116negeqd 11500 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → -(((𝐶𝑖) − (𝐴𝑖)) · ((𝐾 − 1) · ((𝐶𝑖) − (𝐴𝑖)))) = -((𝐾 − 1) · (((𝐶𝑖) − (𝐴𝑖))↑2)))
118111, 117eqtrd 2775 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (-((𝐶𝑖) − (𝐴𝑖)) · ((𝐾 − 1) · ((𝐶𝑖) − (𝐴𝑖)))) = -((𝐾 − 1) · (((𝐶𝑖) − (𝐴𝑖))↑2)))
119 simprl 771 . . . . . . . . . . . . 13 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → 𝐾 ∈ ℝ)
120119recnd 11287 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → 𝐾 ∈ ℂ)
121 subdir 11695 . . . . . . . . . . . . 13 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ ∧ ((𝐶𝑖) − (𝐴𝑖)) ∈ ℂ) → ((𝐾 − 1) · ((𝐶𝑖) − (𝐴𝑖))) = ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) − (1 · ((𝐶𝑖) − (𝐴𝑖)))))
12245, 121mp3an2 1448 . . . . . . . . . . . 12 ((𝐾 ∈ ℂ ∧ ((𝐶𝑖) − (𝐴𝑖)) ∈ ℂ) → ((𝐾 − 1) · ((𝐶𝑖) − (𝐴𝑖))) = ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) − (1 · ((𝐶𝑖) − (𝐴𝑖)))))
123120, 106, 122syl2anc 584 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → ((𝐾 − 1) · ((𝐶𝑖) − (𝐴𝑖))) = ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) − (1 · ((𝐶𝑖) − (𝐴𝑖)))))
124106mullidd 11277 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (1 · ((𝐶𝑖) − (𝐴𝑖))) = ((𝐶𝑖) − (𝐴𝑖)))
125124oveq2d 7447 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) − (1 · ((𝐶𝑖) − (𝐴𝑖)))) = ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) − ((𝐶𝑖) − (𝐴𝑖))))
126119, 105remulcld 11289 . . . . . . . . . . . . 13 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (𝐾 · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℝ)
127126recnd 11287 . . . . . . . . . . . 12 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (𝐾 · ((𝐶𝑖) − (𝐴𝑖))) ∈ ℂ)
128127, 99, 100subsub3d 11648 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) − ((𝐶𝑖) − (𝐴𝑖))) = (((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖)))
129123, 125, 1283eqtrd 2779 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → ((𝐾 − 1) · ((𝐶𝑖) − (𝐴𝑖))) = (((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖)))
130129oveq2d 7447 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (((𝐴𝑖) − (𝐶𝑖)) · ((𝐾 − 1) · ((𝐶𝑖) − (𝐴𝑖)))) = (((𝐴𝑖) − (𝐶𝑖)) · (((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))))
131102, 118, 1303eqtr3rd 2784 . . . . . . . 8 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (((𝐴𝑖) − (𝐶𝑖)) · (((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) = -((𝐾 − 1) · (((𝐶𝑖) − (𝐴𝑖))↑2)))
132105resqcld 14162 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (((𝐶𝑖) − (𝐴𝑖))↑2) ∈ ℝ)
133 simprr 773 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → 1 ≤ 𝐾)
134 subge0 11774 . . . . . . . . . . . . 13 ((𝐾 ∈ ℝ ∧ 1 ∈ ℝ) → (0 ≤ (𝐾 − 1) ↔ 1 ≤ 𝐾))
13563, 134mpan2 691 . . . . . . . . . . . 12 (𝐾 ∈ ℝ → (0 ≤ (𝐾 − 1) ↔ 1 ≤ 𝐾))
136135ad2antrl 728 . . . . . . . . . . 11 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (0 ≤ (𝐾 − 1) ↔ 1 ≤ 𝐾))
137133, 136mpbird 257 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → 0 ≤ (𝐾 − 1))
138105sqge0d 14174 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → 0 ≤ (((𝐶𝑖) − (𝐴𝑖))↑2))
139108, 132, 137, 138mulge0d 11838 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → 0 ≤ ((𝐾 − 1) · (((𝐶𝑖) − (𝐴𝑖))↑2)))
140108, 132remulcld 11289 . . . . . . . . . 10 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → ((𝐾 − 1) · (((𝐶𝑖) − (𝐴𝑖))↑2)) ∈ ℝ)
141140le0neg2d 11833 . . . . . . . . 9 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (0 ≤ ((𝐾 − 1) · (((𝐶𝑖) − (𝐴𝑖))↑2)) ↔ -((𝐾 − 1) · (((𝐶𝑖) − (𝐴𝑖))↑2)) ≤ 0))
142139, 141mpbid 232 . . . . . . . 8 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → -((𝐾 − 1) · (((𝐶𝑖) − (𝐴𝑖))↑2)) ≤ 0)
143131, 142eqbrtrd 5170 . . . . . . 7 ((((𝐴𝑖) ∈ ℝ ∧ (𝐶𝑖) ∈ ℝ) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (((𝐴𝑖) − (𝐶𝑖)) · (((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0)
1447, 143sylan 580 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝑖 ∈ (1...𝑁)) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → (((𝐴𝑖) − (𝐶𝑖)) · (((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0)
145144an32s 652 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) ∧ 𝑖 ∈ (1...𝑁)) → (((𝐴𝑖) − (𝐶𝑖)) · (((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0)
146145ralrimiva 3144 . . . 4 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐾 ∈ ℝ ∧ 1 ≤ 𝐾)) → ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · (((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0)
147146expr 456 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐾 ∈ ℝ) → (1 ≤ 𝐾 → ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · (((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0))
14836, 98, 1473orim123d 1443 . 2 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐾 ∈ ℝ) → ((𝐾 ≤ 0 ∨ (0 ≤ 𝐾𝐾 ≤ 1) ∨ 1 ≤ 𝐾) → (∀𝑖 ∈ (1...𝑁)((((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · (((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0)))
1492, 148mpd 15 1 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ 𝐾 ∈ ℝ) → (∀𝑖 ∈ (1...𝑁)((((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐴𝑖)) · ((𝐶𝑖) − (𝐴𝑖))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐶𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖))) · ((𝐴𝑖) − ((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)))) ≤ 0 ∨ ∀𝑖 ∈ (1...𝑁)(((𝐴𝑖) − (𝐶𝑖)) · (((𝐾 · ((𝐶𝑖) − (𝐴𝑖))) + (𝐴𝑖)) − (𝐶𝑖))) ≤ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1537  wcel 2106  wral 3059   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cle 11294  cmin 11490  -cneg 11491  2c2 12319  ...cfz 13544  cexp 14099  𝔼cee 28918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-seq 14040  df-exp 14100  df-ee 28921
This theorem is referenced by:  colinearalg  28940
  Copyright terms: Public domain W3C validator