Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  el1fzopredsuc Structured version   Visualization version   GIF version

Theorem el1fzopredsuc 47354
Description: An element of an open integer interval starting at 1 joined by 0 and a successor at the beginning and the end is either 0 or an element of the open integer interval or the successor. (Contributed by AV, 14-Jul-2020.)
Assertion
Ref Expression
el1fzopredsuc (𝑁 ∈ ℕ0 → (𝐼 ∈ (0...𝑁) ↔ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)))

Proof of Theorem el1fzopredsuc
StepHypRef Expression
1 elfzelz 13541 . . 3 (𝐼 ∈ (0...𝑁) → 𝐼 ∈ ℤ)
2 1fzopredsuc 47353 . . . . 5 (𝑁 ∈ ℕ0 → (0...𝑁) = (({0} ∪ (1..^𝑁)) ∪ {𝑁}))
32eleq2d 2820 . . . 4 (𝑁 ∈ ℕ0 → (𝐼 ∈ (0...𝑁) ↔ 𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁})))
4 elun 4128 . . . . . . . . 9 (𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}) ↔ (𝐼 ∈ ({0} ∪ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}))
5 elun 4128 . . . . . . . . . 10 (𝐼 ∈ ({0} ∪ (1..^𝑁)) ↔ (𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)))
65orbi1i 913 . . . . . . . . 9 ((𝐼 ∈ ({0} ∪ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}) ↔ ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}))
74, 6bitri 275 . . . . . . . 8 (𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}) ↔ ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}))
8 elsng 4615 . . . . . . . . . . 11 (𝐼 ∈ ℤ → (𝐼 ∈ {0} ↔ 𝐼 = 0))
98adantl 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐼 ∈ ℤ) → (𝐼 ∈ {0} ↔ 𝐼 = 0))
109orbi1d 916 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐼 ∈ ℤ) → ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)) ↔ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁))))
11 elsng 4615 . . . . . . . . . 10 (𝐼 ∈ ℤ → (𝐼 ∈ {𝑁} ↔ 𝐼 = 𝑁))
1211adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐼 ∈ ℤ) → (𝐼 ∈ {𝑁} ↔ 𝐼 = 𝑁))
1310, 12orbi12d 918 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐼 ∈ ℤ) → (((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}) ↔ ((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 = 𝑁)))
147, 13bitrid 283 . . . . . . 7 ((𝑁 ∈ ℕ0𝐼 ∈ ℤ) → (𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}) ↔ ((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 = 𝑁)))
15 df-3or 1087 . . . . . . . 8 ((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁) ↔ ((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 = 𝑁))
1615biimpri 228 . . . . . . 7 (((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 = 𝑁) → (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁))
1714, 16biimtrdi 253 . . . . . 6 ((𝑁 ∈ ℕ0𝐼 ∈ ℤ) → (𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}) → (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)))
1817ex 412 . . . . 5 (𝑁 ∈ ℕ0 → (𝐼 ∈ ℤ → (𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}) → (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁))))
1918com23 86 . . . 4 (𝑁 ∈ ℕ0 → (𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}) → (𝐼 ∈ ℤ → (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁))))
203, 19sylbid 240 . . 3 (𝑁 ∈ ℕ0 → (𝐼 ∈ (0...𝑁) → (𝐼 ∈ ℤ → (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁))))
211, 20mpdi 45 . 2 (𝑁 ∈ ℕ0 → (𝐼 ∈ (0...𝑁) → (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)))
22 c0ex 11229 . . . . . . . . . . . 12 0 ∈ V
2322snid 4638 . . . . . . . . . . 11 0 ∈ {0}
2423a1i 11 . . . . . . . . . 10 (𝐼 = 0 → 0 ∈ {0})
25 eleq1 2822 . . . . . . . . . 10 (𝐼 = 0 → (𝐼 ∈ {0} ↔ 0 ∈ {0}))
2624, 25mpbird 257 . . . . . . . . 9 (𝐼 = 0 → 𝐼 ∈ {0})
2726a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝐼 = 0 → 𝐼 ∈ {0}))
28 idd 24 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝐼 ∈ (1..^𝑁) → 𝐼 ∈ (1..^𝑁)))
29 snidg 4636 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ {𝑁})
30 eleq1 2822 . . . . . . . . 9 (𝐼 = 𝑁 → (𝐼 ∈ {𝑁} ↔ 𝑁 ∈ {𝑁}))
3129, 30syl5ibrcom 247 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝐼 = 𝑁𝐼 ∈ {𝑁}))
3227, 28, 313orim123d 1446 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁) → (𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 ∈ {𝑁})))
3332imp 406 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)) → (𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 ∈ {𝑁}))
34 df-3or 1087 . . . . . 6 ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 ∈ {𝑁}) ↔ ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}))
3533, 34sylib 218 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)) → ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}))
3635, 7sylibr 234 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)) → 𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}))
373adantr 480 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)) → (𝐼 ∈ (0...𝑁) ↔ 𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁})))
3836, 37mpbird 257 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)) → 𝐼 ∈ (0...𝑁))
3938ex 412 . 2 (𝑁 ∈ ℕ0 → ((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁) → 𝐼 ∈ (0...𝑁)))
4021, 39impbid 212 1 (𝑁 ∈ ℕ0 → (𝐼 ∈ (0...𝑁) ↔ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2108  cun 3924  {csn 4601  (class class class)co 7405  0cc0 11129  1c1 11130  0cn0 12501  cz 12588  ...cfz 13524  ..^cfzo 13671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672
This theorem is referenced by:  fmtnofz04prm  47591
  Copyright terms: Public domain W3C validator