Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  el1fzopredsuc Structured version   Visualization version   GIF version

Theorem el1fzopredsuc 47330
Description: An element of an open integer interval starting at 1 joined by 0 and a successor at the beginning and the end is either 0 or an element of the open integer interval or the successor. (Contributed by AV, 14-Jul-2020.)
Assertion
Ref Expression
el1fzopredsuc (𝑁 ∈ ℕ0 → (𝐼 ∈ (0...𝑁) ↔ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)))

Proof of Theorem el1fzopredsuc
StepHypRef Expression
1 elfzelz 13492 . . 3 (𝐼 ∈ (0...𝑁) → 𝐼 ∈ ℤ)
2 1fzopredsuc 47329 . . . . 5 (𝑁 ∈ ℕ0 → (0...𝑁) = (({0} ∪ (1..^𝑁)) ∪ {𝑁}))
32eleq2d 2815 . . . 4 (𝑁 ∈ ℕ0 → (𝐼 ∈ (0...𝑁) ↔ 𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁})))
4 elun 4119 . . . . . . . . 9 (𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}) ↔ (𝐼 ∈ ({0} ∪ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}))
5 elun 4119 . . . . . . . . . 10 (𝐼 ∈ ({0} ∪ (1..^𝑁)) ↔ (𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)))
65orbi1i 913 . . . . . . . . 9 ((𝐼 ∈ ({0} ∪ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}) ↔ ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}))
74, 6bitri 275 . . . . . . . 8 (𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}) ↔ ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}))
8 elsng 4606 . . . . . . . . . . 11 (𝐼 ∈ ℤ → (𝐼 ∈ {0} ↔ 𝐼 = 0))
98adantl 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐼 ∈ ℤ) → (𝐼 ∈ {0} ↔ 𝐼 = 0))
109orbi1d 916 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐼 ∈ ℤ) → ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)) ↔ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁))))
11 elsng 4606 . . . . . . . . . 10 (𝐼 ∈ ℤ → (𝐼 ∈ {𝑁} ↔ 𝐼 = 𝑁))
1211adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐼 ∈ ℤ) → (𝐼 ∈ {𝑁} ↔ 𝐼 = 𝑁))
1310, 12orbi12d 918 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐼 ∈ ℤ) → (((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}) ↔ ((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 = 𝑁)))
147, 13bitrid 283 . . . . . . 7 ((𝑁 ∈ ℕ0𝐼 ∈ ℤ) → (𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}) ↔ ((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 = 𝑁)))
15 df-3or 1087 . . . . . . . 8 ((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁) ↔ ((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 = 𝑁))
1615biimpri 228 . . . . . . 7 (((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 = 𝑁) → (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁))
1714, 16biimtrdi 253 . . . . . 6 ((𝑁 ∈ ℕ0𝐼 ∈ ℤ) → (𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}) → (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)))
1817ex 412 . . . . 5 (𝑁 ∈ ℕ0 → (𝐼 ∈ ℤ → (𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}) → (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁))))
1918com23 86 . . . 4 (𝑁 ∈ ℕ0 → (𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}) → (𝐼 ∈ ℤ → (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁))))
203, 19sylbid 240 . . 3 (𝑁 ∈ ℕ0 → (𝐼 ∈ (0...𝑁) → (𝐼 ∈ ℤ → (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁))))
211, 20mpdi 45 . 2 (𝑁 ∈ ℕ0 → (𝐼 ∈ (0...𝑁) → (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)))
22 c0ex 11175 . . . . . . . . . . . 12 0 ∈ V
2322snid 4629 . . . . . . . . . . 11 0 ∈ {0}
2423a1i 11 . . . . . . . . . 10 (𝐼 = 0 → 0 ∈ {0})
25 eleq1 2817 . . . . . . . . . 10 (𝐼 = 0 → (𝐼 ∈ {0} ↔ 0 ∈ {0}))
2624, 25mpbird 257 . . . . . . . . 9 (𝐼 = 0 → 𝐼 ∈ {0})
2726a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝐼 = 0 → 𝐼 ∈ {0}))
28 idd 24 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝐼 ∈ (1..^𝑁) → 𝐼 ∈ (1..^𝑁)))
29 snidg 4627 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ {𝑁})
30 eleq1 2817 . . . . . . . . 9 (𝐼 = 𝑁 → (𝐼 ∈ {𝑁} ↔ 𝑁 ∈ {𝑁}))
3129, 30syl5ibrcom 247 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝐼 = 𝑁𝐼 ∈ {𝑁}))
3227, 28, 313orim123d 1446 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁) → (𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 ∈ {𝑁})))
3332imp 406 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)) → (𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 ∈ {𝑁}))
34 df-3or 1087 . . . . . 6 ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 ∈ {𝑁}) ↔ ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}))
3533, 34sylib 218 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)) → ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}))
3635, 7sylibr 234 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)) → 𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}))
373adantr 480 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)) → (𝐼 ∈ (0...𝑁) ↔ 𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁})))
3836, 37mpbird 257 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)) → 𝐼 ∈ (0...𝑁))
3938ex 412 . 2 (𝑁 ∈ ℕ0 → ((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁) → 𝐼 ∈ (0...𝑁)))
4021, 39impbid 212 1 (𝑁 ∈ ℕ0 → (𝐼 ∈ (0...𝑁) ↔ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109  cun 3915  {csn 4592  (class class class)co 7390  0cc0 11075  1c1 11076  0cn0 12449  cz 12536  ...cfz 13475  ..^cfzo 13622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623
This theorem is referenced by:  fmtnofz04prm  47582
  Copyright terms: Public domain W3C validator