Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  el1fzopredsuc Structured version   Visualization version   GIF version

Theorem el1fzopredsuc 43675
 Description: An element of an open integer interval starting at 1 joined by 0 and a successor at the beginning and the end is either 0 or an element of the open integer interval or the successor. (Contributed by AV, 14-Jul-2020.)
Assertion
Ref Expression
el1fzopredsuc (𝑁 ∈ ℕ0 → (𝐼 ∈ (0...𝑁) ↔ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)))

Proof of Theorem el1fzopredsuc
StepHypRef Expression
1 elfzelz 12891 . . 3 (𝐼 ∈ (0...𝑁) → 𝐼 ∈ ℤ)
2 1fzopredsuc 43674 . . . . 5 (𝑁 ∈ ℕ0 → (0...𝑁) = (({0} ∪ (1..^𝑁)) ∪ {𝑁}))
32eleq2d 2897 . . . 4 (𝑁 ∈ ℕ0 → (𝐼 ∈ (0...𝑁) ↔ 𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁})))
4 elun 4101 . . . . . . . . 9 (𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}) ↔ (𝐼 ∈ ({0} ∪ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}))
5 elun 4101 . . . . . . . . . 10 (𝐼 ∈ ({0} ∪ (1..^𝑁)) ↔ (𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)))
65orbi1i 911 . . . . . . . . 9 ((𝐼 ∈ ({0} ∪ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}) ↔ ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}))
74, 6bitri 278 . . . . . . . 8 (𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}) ↔ ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}))
8 elsng 4554 . . . . . . . . . . 11 (𝐼 ∈ ℤ → (𝐼 ∈ {0} ↔ 𝐼 = 0))
98adantl 485 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐼 ∈ ℤ) → (𝐼 ∈ {0} ↔ 𝐼 = 0))
109orbi1d 914 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐼 ∈ ℤ) → ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)) ↔ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁))))
11 elsng 4554 . . . . . . . . . 10 (𝐼 ∈ ℤ → (𝐼 ∈ {𝑁} ↔ 𝐼 = 𝑁))
1211adantl 485 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐼 ∈ ℤ) → (𝐼 ∈ {𝑁} ↔ 𝐼 = 𝑁))
1310, 12orbi12d 916 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐼 ∈ ℤ) → (((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}) ↔ ((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 = 𝑁)))
147, 13syl5bb 286 . . . . . . 7 ((𝑁 ∈ ℕ0𝐼 ∈ ℤ) → (𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}) ↔ ((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 = 𝑁)))
15 df-3or 1085 . . . . . . . 8 ((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁) ↔ ((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 = 𝑁))
1615biimpri 231 . . . . . . 7 (((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 = 𝑁) → (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁))
1714, 16syl6bi 256 . . . . . 6 ((𝑁 ∈ ℕ0𝐼 ∈ ℤ) → (𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}) → (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)))
1817ex 416 . . . . 5 (𝑁 ∈ ℕ0 → (𝐼 ∈ ℤ → (𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}) → (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁))))
1918com23 86 . . . 4 (𝑁 ∈ ℕ0 → (𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}) → (𝐼 ∈ ℤ → (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁))))
203, 19sylbid 243 . . 3 (𝑁 ∈ ℕ0 → (𝐼 ∈ (0...𝑁) → (𝐼 ∈ ℤ → (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁))))
211, 20mpdi 45 . 2 (𝑁 ∈ ℕ0 → (𝐼 ∈ (0...𝑁) → (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)))
22 c0ex 10612 . . . . . . . . . . . 12 0 ∈ V
2322snid 4574 . . . . . . . . . . 11 0 ∈ {0}
2423a1i 11 . . . . . . . . . 10 (𝐼 = 0 → 0 ∈ {0})
25 eleq1 2899 . . . . . . . . . 10 (𝐼 = 0 → (𝐼 ∈ {0} ↔ 0 ∈ {0}))
2624, 25mpbird 260 . . . . . . . . 9 (𝐼 = 0 → 𝐼 ∈ {0})
2726a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝐼 = 0 → 𝐼 ∈ {0}))
28 idd 24 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝐼 ∈ (1..^𝑁) → 𝐼 ∈ (1..^𝑁)))
29 snidg 4572 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ {𝑁})
30 eleq1 2899 . . . . . . . . 9 (𝐼 = 𝑁 → (𝐼 ∈ {𝑁} ↔ 𝑁 ∈ {𝑁}))
3129, 30syl5ibrcom 250 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝐼 = 𝑁𝐼 ∈ {𝑁}))
3227, 28, 313orim123d 1441 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁) → (𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 ∈ {𝑁})))
3332imp 410 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)) → (𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 ∈ {𝑁}))
34 df-3or 1085 . . . . . 6 ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 ∈ {𝑁}) ↔ ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}))
3533, 34sylib 221 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)) → ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}))
3635, 7sylibr 237 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)) → 𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}))
373adantr 484 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)) → (𝐼 ∈ (0...𝑁) ↔ 𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁})))
3836, 37mpbird 260 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)) → 𝐼 ∈ (0...𝑁))
3938ex 416 . 2 (𝑁 ∈ ℕ0 → ((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁) → 𝐼 ∈ (0...𝑁)))
4021, 39impbid 215 1 (𝑁 ∈ ℕ0 → (𝐼 ∈ (0...𝑁) ↔ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∨ w3o 1083   = wceq 1538   ∈ wcel 2115   ∪ cun 3908  {csn 4540  (class class class)co 7130  0cc0 10514  1c1 10515  ℕ0cn0 11875  ℤcz 11959  ...cfz 12875  ..^cfzo 13016 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-n0 11876  df-z 11960  df-uz 12222  df-fz 12876  df-fzo 13017 This theorem is referenced by:  fmtnofz04prm  43887
 Copyright terms: Public domain W3C validator