Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  el1fzopredsuc Structured version   Visualization version   GIF version

Theorem el1fzopredsuc 47319
Description: An element of an open integer interval starting at 1 joined by 0 and a successor at the beginning and the end is either 0 or an element of the open integer interval or the successor. (Contributed by AV, 14-Jul-2020.)
Assertion
Ref Expression
el1fzopredsuc (𝑁 ∈ ℕ0 → (𝐼 ∈ (0...𝑁) ↔ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)))

Proof of Theorem el1fzopredsuc
StepHypRef Expression
1 elfzelz 13427 . . 3 (𝐼 ∈ (0...𝑁) → 𝐼 ∈ ℤ)
2 1fzopredsuc 47318 . . . . 5 (𝑁 ∈ ℕ0 → (0...𝑁) = (({0} ∪ (1..^𝑁)) ∪ {𝑁}))
32eleq2d 2814 . . . 4 (𝑁 ∈ ℕ0 → (𝐼 ∈ (0...𝑁) ↔ 𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁})))
4 elun 4104 . . . . . . . . 9 (𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}) ↔ (𝐼 ∈ ({0} ∪ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}))
5 elun 4104 . . . . . . . . . 10 (𝐼 ∈ ({0} ∪ (1..^𝑁)) ↔ (𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)))
65orbi1i 913 . . . . . . . . 9 ((𝐼 ∈ ({0} ∪ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}) ↔ ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}))
74, 6bitri 275 . . . . . . . 8 (𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}) ↔ ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}))
8 elsng 4591 . . . . . . . . . . 11 (𝐼 ∈ ℤ → (𝐼 ∈ {0} ↔ 𝐼 = 0))
98adantl 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐼 ∈ ℤ) → (𝐼 ∈ {0} ↔ 𝐼 = 0))
109orbi1d 916 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐼 ∈ ℤ) → ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)) ↔ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁))))
11 elsng 4591 . . . . . . . . . 10 (𝐼 ∈ ℤ → (𝐼 ∈ {𝑁} ↔ 𝐼 = 𝑁))
1211adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐼 ∈ ℤ) → (𝐼 ∈ {𝑁} ↔ 𝐼 = 𝑁))
1310, 12orbi12d 918 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐼 ∈ ℤ) → (((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}) ↔ ((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 = 𝑁)))
147, 13bitrid 283 . . . . . . 7 ((𝑁 ∈ ℕ0𝐼 ∈ ℤ) → (𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}) ↔ ((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 = 𝑁)))
15 df-3or 1087 . . . . . . . 8 ((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁) ↔ ((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 = 𝑁))
1615biimpri 228 . . . . . . 7 (((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 = 𝑁) → (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁))
1714, 16biimtrdi 253 . . . . . 6 ((𝑁 ∈ ℕ0𝐼 ∈ ℤ) → (𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}) → (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)))
1817ex 412 . . . . 5 (𝑁 ∈ ℕ0 → (𝐼 ∈ ℤ → (𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}) → (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁))))
1918com23 86 . . . 4 (𝑁 ∈ ℕ0 → (𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}) → (𝐼 ∈ ℤ → (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁))))
203, 19sylbid 240 . . 3 (𝑁 ∈ ℕ0 → (𝐼 ∈ (0...𝑁) → (𝐼 ∈ ℤ → (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁))))
211, 20mpdi 45 . 2 (𝑁 ∈ ℕ0 → (𝐼 ∈ (0...𝑁) → (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)))
22 c0ex 11109 . . . . . . . . . . . 12 0 ∈ V
2322snid 4614 . . . . . . . . . . 11 0 ∈ {0}
2423a1i 11 . . . . . . . . . 10 (𝐼 = 0 → 0 ∈ {0})
25 eleq1 2816 . . . . . . . . . 10 (𝐼 = 0 → (𝐼 ∈ {0} ↔ 0 ∈ {0}))
2624, 25mpbird 257 . . . . . . . . 9 (𝐼 = 0 → 𝐼 ∈ {0})
2726a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝐼 = 0 → 𝐼 ∈ {0}))
28 idd 24 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝐼 ∈ (1..^𝑁) → 𝐼 ∈ (1..^𝑁)))
29 snidg 4612 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ {𝑁})
30 eleq1 2816 . . . . . . . . 9 (𝐼 = 𝑁 → (𝐼 ∈ {𝑁} ↔ 𝑁 ∈ {𝑁}))
3129, 30syl5ibrcom 247 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝐼 = 𝑁𝐼 ∈ {𝑁}))
3227, 28, 313orim123d 1446 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁) → (𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 ∈ {𝑁})))
3332imp 406 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)) → (𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 ∈ {𝑁}))
34 df-3or 1087 . . . . . 6 ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 ∈ {𝑁}) ↔ ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}))
3533, 34sylib 218 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)) → ((𝐼 ∈ {0} ∨ 𝐼 ∈ (1..^𝑁)) ∨ 𝐼 ∈ {𝑁}))
3635, 7sylibr 234 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)) → 𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁}))
373adantr 480 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)) → (𝐼 ∈ (0...𝑁) ↔ 𝐼 ∈ (({0} ∪ (1..^𝑁)) ∪ {𝑁})))
3836, 37mpbird 257 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)) → 𝐼 ∈ (0...𝑁))
3938ex 412 . 2 (𝑁 ∈ ℕ0 → ((𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁) → 𝐼 ∈ (0...𝑁)))
4021, 39impbid 212 1 (𝑁 ∈ ℕ0 → (𝐼 ∈ (0...𝑁) ↔ (𝐼 = 0 ∨ 𝐼 ∈ (1..^𝑁) ∨ 𝐼 = 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109  cun 3901  {csn 4577  (class class class)co 7349  0cc0 11009  1c1 11010  0cn0 12384  cz 12471  ...cfz 13410  ..^cfzo 13557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558
This theorem is referenced by:  fmtnofz04prm  47571
  Copyright terms: Public domain W3C validator