Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtno4prmfac Structured version   Visualization version   GIF version

Theorem fmtno4prmfac 44089
Description: If P was a (prime) factor of the fourth Fermat number less than the square root of the fourth Fermat number, it would be either 65 or 129 or 193. (Contributed by AV, 28-Jul-2021.)
Assertion
Ref Expression
fmtno4prmfac ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))

Proof of Theorem fmtno4prmfac
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2z 12002 . . . . 5 2 ∈ ℤ
2 4z 12004 . . . . 5 4 ∈ ℤ
3 2re 11699 . . . . . 6 2 ∈ ℝ
4 4re 11709 . . . . . 6 4 ∈ ℝ
5 2lt4 11800 . . . . . 6 2 < 4
63, 4, 5ltleii 10752 . . . . 5 2 ≤ 4
7 eluz2 12237 . . . . 5 (4 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ≤ 4))
81, 2, 6, 7mpbir3an 1338 . . . 4 4 ∈ (ℤ‘2)
9 fmtnoprmfac2 44084 . . . 4 ((4 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(4 + 2))) + 1))
108, 9mp3an1 1445 . . 3 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(4 + 2))) + 1))
11 elnnuz 12270 . . . . . . 7 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
12 4nn 11708 . . . . . . . . . 10 4 ∈ ℕ
13 nnuz 12269 . . . . . . . . . 10 ℕ = (ℤ‘1)
1412, 13eleqtri 2888 . . . . . . . . 9 4 ∈ (ℤ‘1)
15 fzouzsplit 13067 . . . . . . . . 9 (4 ∈ (ℤ‘1) → (ℤ‘1) = ((1..^4) ∪ (ℤ‘4)))
1614, 15ax-mp 5 . . . . . . . 8 (ℤ‘1) = ((1..^4) ∪ (ℤ‘4))
1716eleq2i 2881 . . . . . . 7 (𝑘 ∈ (ℤ‘1) ↔ 𝑘 ∈ ((1..^4) ∪ (ℤ‘4)))
18 elun 4076 . . . . . . . 8 (𝑘 ∈ ((1..^4) ∪ (ℤ‘4)) ↔ (𝑘 ∈ (1..^4) ∨ 𝑘 ∈ (ℤ‘4)))
19 fzo1to4tp 13120 . . . . . . . . . . 11 (1..^4) = {1, 2, 3}
2019eleq2i 2881 . . . . . . . . . 10 (𝑘 ∈ (1..^4) ↔ 𝑘 ∈ {1, 2, 3})
21 vex 3444 . . . . . . . . . . 11 𝑘 ∈ V
2221eltp 4586 . . . . . . . . . 10 (𝑘 ∈ {1, 2, 3} ↔ (𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3))
2320, 22bitri 278 . . . . . . . . 9 (𝑘 ∈ (1..^4) ↔ (𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3))
2423orbi1i 911 . . . . . . . 8 ((𝑘 ∈ (1..^4) ∨ 𝑘 ∈ (ℤ‘4)) ↔ ((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)))
2518, 24bitri 278 . . . . . . 7 (𝑘 ∈ ((1..^4) ∪ (ℤ‘4)) ↔ ((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)))
2611, 17, 253bitri 300 . . . . . 6 (𝑘 ∈ ℕ ↔ ((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)))
27 4p2e6 11778 . . . . . . . . . . . . 13 (4 + 2) = 6
2827oveq2i 7146 . . . . . . . . . . . 12 (2↑(4 + 2)) = (2↑6)
29 2exp6 16413 . . . . . . . . . . . 12 (2↑6) = 64
3028, 29eqtri 2821 . . . . . . . . . . 11 (2↑(4 + 2)) = 64
3130oveq2i 7146 . . . . . . . . . 10 (𝑘 · (2↑(4 + 2))) = (𝑘 · 64)
3231oveq1i 7145 . . . . . . . . 9 ((𝑘 · (2↑(4 + 2))) + 1) = ((𝑘 · 64) + 1)
3332eqeq2i 2811 . . . . . . . 8 (𝑃 = ((𝑘 · (2↑(4 + 2))) + 1) ↔ 𝑃 = ((𝑘 · 64) + 1))
34 simpl 486 . . . . . . . . . . . . . . 15 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 1) → 𝑃 = ((𝑘 · 64) + 1))
35 oveq1 7142 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 1 → (𝑘 · 64) = (1 · 64))
36 6nn0 11906 . . . . . . . . . . . . . . . . . . . . . 22 6 ∈ ℕ0
37 4nn0 11904 . . . . . . . . . . . . . . . . . . . . . 22 4 ∈ ℕ0
3836, 37deccl 12101 . . . . . . . . . . . . . . . . . . . . 21 64 ∈ ℕ0
3938nn0cni 11897 . . . . . . . . . . . . . . . . . . . 20 64 ∈ ℂ
4039mulid2i 10635 . . . . . . . . . . . . . . . . . . 19 (1 · 64) = 64
4135, 40eqtrdi 2849 . . . . . . . . . . . . . . . . . 18 (𝑘 = 1 → (𝑘 · 64) = 64)
4241oveq1d 7150 . . . . . . . . . . . . . . . . 17 (𝑘 = 1 → ((𝑘 · 64) + 1) = (64 + 1))
43 4p1e5 11771 . . . . . . . . . . . . . . . . . 18 (4 + 1) = 5
44 eqid 2798 . . . . . . . . . . . . . . . . . 18 64 = 64
4536, 37, 43, 44decsuc 12117 . . . . . . . . . . . . . . . . 17 (64 + 1) = 65
4642, 45eqtrdi 2849 . . . . . . . . . . . . . . . 16 (𝑘 = 1 → ((𝑘 · 64) + 1) = 65)
4746adantl 485 . . . . . . . . . . . . . . 15 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 1) → ((𝑘 · 64) + 1) = 65)
4834, 47eqtrd 2833 . . . . . . . . . . . . . 14 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 1) → 𝑃 = 65)
4948ex 416 . . . . . . . . . . . . 13 (𝑃 = ((𝑘 · 64) + 1) → (𝑘 = 1 → 𝑃 = 65))
50 simpl 486 . . . . . . . . . . . . . . 15 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 2) → 𝑃 = ((𝑘 · 64) + 1))
51 oveq1 7142 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 2 → (𝑘 · 64) = (2 · 64))
52 2nn0 11902 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℕ0
53 6cn 11716 . . . . . . . . . . . . . . . . . . . . . 22 6 ∈ ℂ
54 2cn 11700 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℂ
55 6t2e12 12190 . . . . . . . . . . . . . . . . . . . . . 22 (6 · 2) = 12
5653, 54, 55mulcomli 10639 . . . . . . . . . . . . . . . . . . . . 21 (2 · 6) = 12
5756eqcomi 2807 . . . . . . . . . . . . . . . . . . . 20 12 = (2 · 6)
58 4cn 11710 . . . . . . . . . . . . . . . . . . . . . 22 4 ∈ ℂ
59 4t2e8 11793 . . . . . . . . . . . . . . . . . . . . . 22 (4 · 2) = 8
6058, 54, 59mulcomli 10639 . . . . . . . . . . . . . . . . . . . . 21 (2 · 4) = 8
6160eqcomi 2807 . . . . . . . . . . . . . . . . . . . 20 8 = (2 · 4)
6236, 37, 52, 57, 61decmul10add 12155 . . . . . . . . . . . . . . . . . . 19 (2 · 64) = (120 + 8)
6351, 62eqtrdi 2849 . . . . . . . . . . . . . . . . . 18 (𝑘 = 2 → (𝑘 · 64) = (120 + 8))
6463oveq1d 7150 . . . . . . . . . . . . . . . . 17 (𝑘 = 2 → ((𝑘 · 64) + 1) = ((120 + 8) + 1))
65 1nn0 11901 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℕ0
6665, 52deccl 12101 . . . . . . . . . . . . . . . . . 18 12 ∈ ℕ0
67 8nn0 11908 . . . . . . . . . . . . . . . . . 18 8 ∈ ℕ0
68 8p1e9 11775 . . . . . . . . . . . . . . . . . 18 (8 + 1) = 9
69 0nn0 11900 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℕ0
70 eqid 2798 . . . . . . . . . . . . . . . . . . 19 120 = 120
71 8cn 11722 . . . . . . . . . . . . . . . . . . . 20 8 ∈ ℂ
7271addid2i 10817 . . . . . . . . . . . . . . . . . . 19 (0 + 8) = 8
7366, 69, 67, 70, 72decaddi 12146 . . . . . . . . . . . . . . . . . 18 (120 + 8) = 128
7466, 67, 68, 73decsuc 12117 . . . . . . . . . . . . . . . . 17 ((120 + 8) + 1) = 129
7564, 74eqtrdi 2849 . . . . . . . . . . . . . . . 16 (𝑘 = 2 → ((𝑘 · 64) + 1) = 129)
7675adantl 485 . . . . . . . . . . . . . . 15 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 2) → ((𝑘 · 64) + 1) = 129)
7750, 76eqtrd 2833 . . . . . . . . . . . . . 14 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 2) → 𝑃 = 129)
7877ex 416 . . . . . . . . . . . . 13 (𝑃 = ((𝑘 · 64) + 1) → (𝑘 = 2 → 𝑃 = 129))
79 simpl 486 . . . . . . . . . . . . . . 15 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 3) → 𝑃 = ((𝑘 · 64) + 1))
80 oveq1 7142 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 3 → (𝑘 · 64) = (3 · 64))
81 3nn0 11903 . . . . . . . . . . . . . . . . . . . 20 3 ∈ ℕ0
82 6t3e18 12191 . . . . . . . . . . . . . . . . . . . . 21 (6 · 3) = 18
83 3cn 11706 . . . . . . . . . . . . . . . . . . . . . 22 3 ∈ ℂ
8453, 83mulcomi 10638 . . . . . . . . . . . . . . . . . . . . 21 (6 · 3) = (3 · 6)
8582, 84eqtr3i 2823 . . . . . . . . . . . . . . . . . . . 20 18 = (3 · 6)
86 4t3e12 12184 . . . . . . . . . . . . . . . . . . . . 21 (4 · 3) = 12
8758, 83mulcomi 10638 . . . . . . . . . . . . . . . . . . . . 21 (4 · 3) = (3 · 4)
8886, 87eqtr3i 2823 . . . . . . . . . . . . . . . . . . . 20 12 = (3 · 4)
8936, 37, 81, 85, 88decmul10add 12155 . . . . . . . . . . . . . . . . . . 19 (3 · 64) = (180 + 12)
9080, 89eqtrdi 2849 . . . . . . . . . . . . . . . . . 18 (𝑘 = 3 → (𝑘 · 64) = (180 + 12))
9190oveq1d 7150 . . . . . . . . . . . . . . . . 17 (𝑘 = 3 → ((𝑘 · 64) + 1) = ((180 + 12) + 1))
92 9nn0 11909 . . . . . . . . . . . . . . . . . . 19 9 ∈ ℕ0
9365, 92deccl 12101 . . . . . . . . . . . . . . . . . 18 19 ∈ ℕ0
94 2p1e3 11767 . . . . . . . . . . . . . . . . . 18 (2 + 1) = 3
9565, 67deccl 12101 . . . . . . . . . . . . . . . . . . 19 18 ∈ ℕ0
96 eqid 2798 . . . . . . . . . . . . . . . . . . 19 180 = 180
97 eqid 2798 . . . . . . . . . . . . . . . . . . 19 12 = 12
98 eqid 2798 . . . . . . . . . . . . . . . . . . . 20 18 = 18
9965, 67, 68, 98decsuc 12117 . . . . . . . . . . . . . . . . . . 19 (18 + 1) = 19
10054addid2i 10817 . . . . . . . . . . . . . . . . . . 19 (0 + 2) = 2
10195, 69, 65, 52, 96, 97, 99, 100decadd 12140 . . . . . . . . . . . . . . . . . 18 (180 + 12) = 192
10293, 52, 94, 101decsuc 12117 . . . . . . . . . . . . . . . . 17 ((180 + 12) + 1) = 193
10391, 102eqtrdi 2849 . . . . . . . . . . . . . . . 16 (𝑘 = 3 → ((𝑘 · 64) + 1) = 193)
104103adantl 485 . . . . . . . . . . . . . . 15 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 3) → ((𝑘 · 64) + 1) = 193)
10579, 104eqtrd 2833 . . . . . . . . . . . . . 14 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 3) → 𝑃 = 193)
106105ex 416 . . . . . . . . . . . . 13 (𝑃 = ((𝑘 · 64) + 1) → (𝑘 = 3 → 𝑃 = 193))
10749, 78, 1063orim123d 1441 . . . . . . . . . . . 12 (𝑃 = ((𝑘 · 64) + 1) → ((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))
108107a1i 11 . . . . . . . . . . 11 (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = ((𝑘 · 64) + 1) → ((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
109108com13 88 . . . . . . . . . 10 ((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) → (𝑃 = ((𝑘 · 64) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
110 fmtno4sqrt 44088 . . . . . . . . . . . . 13 (⌊‘(√‘(FermatNo‘4))) = 256
111110breq2i 5038 . . . . . . . . . . . 12 (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) ↔ 𝑃256)
112 breq1 5033 . . . . . . . . . . . . . 14 (𝑃 = ((𝑘 · 64) + 1) → (𝑃256 ↔ ((𝑘 · 64) + 1) ≤ 256))
113112adantl 485 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ‘4) ∧ 𝑃 = ((𝑘 · 64) + 1)) → (𝑃256 ↔ ((𝑘 · 64) + 1) ≤ 256))
114 eluz2 12237 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘4) ↔ (4 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 4 ≤ 𝑘))
115 6t4e24 12192 . . . . . . . . . . . . . . . . . . . . . . 23 (6 · 4) = 24
11653, 58, 115mulcomli 10639 . . . . . . . . . . . . . . . . . . . . . 22 (4 · 6) = 24
11752, 37, 43, 116decsuc 12117 . . . . . . . . . . . . . . . . . . . . 21 ((4 · 6) + 1) = 25
118 4t4e16 12185 . . . . . . . . . . . . . . . . . . . . 21 (4 · 4) = 16
11937, 36, 37, 44, 36, 65, 117, 118decmul2c 12152 . . . . . . . . . . . . . . . . . . . 20 (4 · 64) = 256
120 zre 11973 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
12138nn0rei 11896 . . . . . . . . . . . . . . . . . . . . . . . 24 64 ∈ ℝ
12236, 12decnncl 12106 . . . . . . . . . . . . . . . . . . . . . . . . 25 64 ∈ ℕ
123122nngt0i 11664 . . . . . . . . . . . . . . . . . . . . . . . 24 0 < 64
124121, 123pm3.2i 474 . . . . . . . . . . . . . . . . . . . . . . 23 (64 ∈ ℝ ∧ 0 < 64)
125124a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → (64 ∈ ℝ ∧ 0 < 64))
126 lemul1 11481 . . . . . . . . . . . . . . . . . . . . . 22 ((4 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (64 ∈ ℝ ∧ 0 < 64)) → (4 ≤ 𝑘 ↔ (4 · 64) ≤ (𝑘 · 64)))
1274, 120, 125, 126mp3an2i 1463 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → (4 ≤ 𝑘 ↔ (4 · 64) ≤ (𝑘 · 64)))
128127biimpa 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 4 ≤ 𝑘) → (4 · 64) ≤ (𝑘 · 64))
129119, 128eqbrtrrid 5066 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℤ ∧ 4 ≤ 𝑘) → 256 ≤ (𝑘 · 64))
130 5nn0 11905 . . . . . . . . . . . . . . . . . . . . . . 23 5 ∈ ℕ0
13152, 130deccl 12101 . . . . . . . . . . . . . . . . . . . . . 22 25 ∈ ℕ0
132131, 36deccl 12101 . . . . . . . . . . . . . . . . . . . . 21 256 ∈ ℕ0
133132nn0zi 11995 . . . . . . . . . . . . . . . . . . . 20 256 ∈ ℤ
134 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → 𝑘 ∈ ℤ)
13538nn0zi 11995 . . . . . . . . . . . . . . . . . . . . . . 23 64 ∈ ℤ
136135a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → 64 ∈ ℤ)
137134, 136zmulcld 12081 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → (𝑘 · 64) ∈ ℤ)
138137adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 4 ≤ 𝑘) → (𝑘 · 64) ∈ ℤ)
139 zleltp1 12021 . . . . . . . . . . . . . . . . . . . 20 ((256 ∈ ℤ ∧ (𝑘 · 64) ∈ ℤ) → (256 ≤ (𝑘 · 64) ↔ 256 < ((𝑘 · 64) + 1)))
140133, 138, 139sylancr 590 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℤ ∧ 4 ≤ 𝑘) → (256 ≤ (𝑘 · 64) ↔ 256 < ((𝑘 · 64) + 1)))
141129, 140mpbid 235 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℤ ∧ 4 ≤ 𝑘) → 256 < ((𝑘 · 64) + 1))
1421413adant1 1127 . . . . . . . . . . . . . . . . 17 ((4 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 4 ≤ 𝑘) → 256 < ((𝑘 · 64) + 1))
143114, 142sylbi 220 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘4) → 256 < ((𝑘 · 64) + 1))
144132nn0rei 11896 . . . . . . . . . . . . . . . . . 18 256 ∈ ℝ
145144a1i 11 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘4) → 256 ∈ ℝ)
146 eluzelre 12242 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (ℤ‘4) → 𝑘 ∈ ℝ)
147121a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (ℤ‘4) → 64 ∈ ℝ)
148146, 147remulcld 10660 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℤ‘4) → (𝑘 · 64) ∈ ℝ)
149 peano2re 10802 . . . . . . . . . . . . . . . . . 18 ((𝑘 · 64) ∈ ℝ → ((𝑘 · 64) + 1) ∈ ℝ)
150148, 149syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘4) → ((𝑘 · 64) + 1) ∈ ℝ)
151145, 150ltnled 10776 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘4) → (256 < ((𝑘 · 64) + 1) ↔ ¬ ((𝑘 · 64) + 1) ≤ 256))
152143, 151mpbid 235 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ‘4) → ¬ ((𝑘 · 64) + 1) ≤ 256)
153152pm2.21d 121 . . . . . . . . . . . . . 14 (𝑘 ∈ (ℤ‘4) → (((𝑘 · 64) + 1) ≤ 256 → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))
154153adantr 484 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ‘4) ∧ 𝑃 = ((𝑘 · 64) + 1)) → (((𝑘 · 64) + 1) ≤ 256 → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))
155113, 154sylbid 243 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ‘4) ∧ 𝑃 = ((𝑘 · 64) + 1)) → (𝑃256 → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))
156111, 155syl5bi 245 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ‘4) ∧ 𝑃 = ((𝑘 · 64) + 1)) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))
157156ex 416 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘4) → (𝑃 = ((𝑘 · 64) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
158109, 157jaoi 854 . . . . . . . . 9 (((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)) → (𝑃 = ((𝑘 · 64) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
159158adantr 484 . . . . . . . 8 ((((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4))) → (𝑃 = ((𝑘 · 64) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
16033, 159syl5bi 245 . . . . . . 7 ((((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4))) → (𝑃 = ((𝑘 · (2↑(4 + 2))) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
161160ex 416 . . . . . 6 (((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)) → ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → (𝑃 = ((𝑘 · (2↑(4 + 2))) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))))
16226, 161sylbi 220 . . . . 5 (𝑘 ∈ ℕ → ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → (𝑃 = ((𝑘 · (2↑(4 + 2))) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))))
163162com12 32 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → (𝑘 ∈ ℕ → (𝑃 = ((𝑘 · (2↑(4 + 2))) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))))
164163rexlimdv 3242 . . 3 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → (∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(4 + 2))) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
16510, 164mpd 15 . 2 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))
1661653impia 1114 1 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3o 1083  w3a 1084   = wceq 1538  wcel 2111  wrex 3107  cun 3879  {ctp 4529   class class class wbr 5030  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cn 11625  2c2 11680  3c3 11681  4c4 11682  5c5 11683  6c6 11684  8c8 11686  9c9 11687  cz 11969  cdc 12086  cuz 12231  ..^cfzo 13028  cfl 13155  cexp 13425  csqrt 14584  cdvds 15599  cprime 16005  FermatNocfmtno 44044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-ioo 12730  df-ico 12732  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-prod 15252  df-dvds 15600  df-gcd 15834  df-prm 16006  df-odz 16092  df-phi 16093  df-pc 16164  df-lgs 25879  df-fmtno 44045
This theorem is referenced by:  fmtno4prmfac193  44090
  Copyright terms: Public domain W3C validator