Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtno4prmfac Structured version   Visualization version   GIF version

Theorem fmtno4prmfac 44980
Description: If P was a (prime) factor of the fourth Fermat number less than the square root of the fourth Fermat number, it would be either 65 or 129 or 193. (Contributed by AV, 28-Jul-2021.)
Assertion
Ref Expression
fmtno4prmfac ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))

Proof of Theorem fmtno4prmfac
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2z 12340 . . . . 5 2 ∈ ℤ
2 4z 12342 . . . . 5 4 ∈ ℤ
3 2re 12035 . . . . . 6 2 ∈ ℝ
4 4re 12045 . . . . . 6 4 ∈ ℝ
5 2lt4 12136 . . . . . 6 2 < 4
63, 4, 5ltleii 11086 . . . . 5 2 ≤ 4
7 eluz2 12576 . . . . 5 (4 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ≤ 4))
81, 2, 6, 7mpbir3an 1340 . . . 4 4 ∈ (ℤ‘2)
9 fmtnoprmfac2 44975 . . . 4 ((4 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(4 + 2))) + 1))
108, 9mp3an1 1447 . . 3 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → ∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(4 + 2))) + 1))
11 elnnuz 12610 . . . . . . 7 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
12 4nn 12044 . . . . . . . . . 10 4 ∈ ℕ
13 nnuz 12609 . . . . . . . . . 10 ℕ = (ℤ‘1)
1412, 13eleqtri 2837 . . . . . . . . 9 4 ∈ (ℤ‘1)
15 fzouzsplit 13410 . . . . . . . . 9 (4 ∈ (ℤ‘1) → (ℤ‘1) = ((1..^4) ∪ (ℤ‘4)))
1614, 15ax-mp 5 . . . . . . . 8 (ℤ‘1) = ((1..^4) ∪ (ℤ‘4))
1716eleq2i 2830 . . . . . . 7 (𝑘 ∈ (ℤ‘1) ↔ 𝑘 ∈ ((1..^4) ∪ (ℤ‘4)))
18 elun 4083 . . . . . . . 8 (𝑘 ∈ ((1..^4) ∪ (ℤ‘4)) ↔ (𝑘 ∈ (1..^4) ∨ 𝑘 ∈ (ℤ‘4)))
19 fzo1to4tp 13463 . . . . . . . . . . 11 (1..^4) = {1, 2, 3}
2019eleq2i 2830 . . . . . . . . . 10 (𝑘 ∈ (1..^4) ↔ 𝑘 ∈ {1, 2, 3})
21 vex 3434 . . . . . . . . . . 11 𝑘 ∈ V
2221eltp 4625 . . . . . . . . . 10 (𝑘 ∈ {1, 2, 3} ↔ (𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3))
2320, 22bitri 274 . . . . . . . . 9 (𝑘 ∈ (1..^4) ↔ (𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3))
2423orbi1i 911 . . . . . . . 8 ((𝑘 ∈ (1..^4) ∨ 𝑘 ∈ (ℤ‘4)) ↔ ((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)))
2518, 24bitri 274 . . . . . . 7 (𝑘 ∈ ((1..^4) ∪ (ℤ‘4)) ↔ ((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)))
2611, 17, 253bitri 297 . . . . . 6 (𝑘 ∈ ℕ ↔ ((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)))
27 4p2e6 12114 . . . . . . . . . . . . 13 (4 + 2) = 6
2827oveq2i 7279 . . . . . . . . . . . 12 (2↑(4 + 2)) = (2↑6)
29 2exp6 16776 . . . . . . . . . . . 12 (2↑6) = 64
3028, 29eqtri 2766 . . . . . . . . . . 11 (2↑(4 + 2)) = 64
3130oveq2i 7279 . . . . . . . . . 10 (𝑘 · (2↑(4 + 2))) = (𝑘 · 64)
3231oveq1i 7278 . . . . . . . . 9 ((𝑘 · (2↑(4 + 2))) + 1) = ((𝑘 · 64) + 1)
3332eqeq2i 2751 . . . . . . . 8 (𝑃 = ((𝑘 · (2↑(4 + 2))) + 1) ↔ 𝑃 = ((𝑘 · 64) + 1))
34 simpl 483 . . . . . . . . . . . . . . 15 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 1) → 𝑃 = ((𝑘 · 64) + 1))
35 oveq1 7275 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 1 → (𝑘 · 64) = (1 · 64))
36 6nn0 12242 . . . . . . . . . . . . . . . . . . . . . 22 6 ∈ ℕ0
37 4nn0 12240 . . . . . . . . . . . . . . . . . . . . . 22 4 ∈ ℕ0
3836, 37deccl 12440 . . . . . . . . . . . . . . . . . . . . 21 64 ∈ ℕ0
3938nn0cni 12233 . . . . . . . . . . . . . . . . . . . 20 64 ∈ ℂ
4039mulid2i 10968 . . . . . . . . . . . . . . . . . . 19 (1 · 64) = 64
4135, 40eqtrdi 2794 . . . . . . . . . . . . . . . . . 18 (𝑘 = 1 → (𝑘 · 64) = 64)
4241oveq1d 7283 . . . . . . . . . . . . . . . . 17 (𝑘 = 1 → ((𝑘 · 64) + 1) = (64 + 1))
43 4p1e5 12107 . . . . . . . . . . . . . . . . . 18 (4 + 1) = 5
44 eqid 2738 . . . . . . . . . . . . . . . . . 18 64 = 64
4536, 37, 43, 44decsuc 12456 . . . . . . . . . . . . . . . . 17 (64 + 1) = 65
4642, 45eqtrdi 2794 . . . . . . . . . . . . . . . 16 (𝑘 = 1 → ((𝑘 · 64) + 1) = 65)
4746adantl 482 . . . . . . . . . . . . . . 15 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 1) → ((𝑘 · 64) + 1) = 65)
4834, 47eqtrd 2778 . . . . . . . . . . . . . 14 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 1) → 𝑃 = 65)
4948ex 413 . . . . . . . . . . . . 13 (𝑃 = ((𝑘 · 64) + 1) → (𝑘 = 1 → 𝑃 = 65))
50 simpl 483 . . . . . . . . . . . . . . 15 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 2) → 𝑃 = ((𝑘 · 64) + 1))
51 oveq1 7275 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 2 → (𝑘 · 64) = (2 · 64))
52 2nn0 12238 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℕ0
53 6cn 12052 . . . . . . . . . . . . . . . . . . . . . 22 6 ∈ ℂ
54 2cn 12036 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℂ
55 6t2e12 12529 . . . . . . . . . . . . . . . . . . . . . 22 (6 · 2) = 12
5653, 54, 55mulcomli 10972 . . . . . . . . . . . . . . . . . . . . 21 (2 · 6) = 12
5756eqcomi 2747 . . . . . . . . . . . . . . . . . . . 20 12 = (2 · 6)
58 4cn 12046 . . . . . . . . . . . . . . . . . . . . . 22 4 ∈ ℂ
59 4t2e8 12129 . . . . . . . . . . . . . . . . . . . . . 22 (4 · 2) = 8
6058, 54, 59mulcomli 10972 . . . . . . . . . . . . . . . . . . . . 21 (2 · 4) = 8
6160eqcomi 2747 . . . . . . . . . . . . . . . . . . . 20 8 = (2 · 4)
6236, 37, 52, 57, 61decmul10add 12494 . . . . . . . . . . . . . . . . . . 19 (2 · 64) = (120 + 8)
6351, 62eqtrdi 2794 . . . . . . . . . . . . . . . . . 18 (𝑘 = 2 → (𝑘 · 64) = (120 + 8))
6463oveq1d 7283 . . . . . . . . . . . . . . . . 17 (𝑘 = 2 → ((𝑘 · 64) + 1) = ((120 + 8) + 1))
65 1nn0 12237 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℕ0
6665, 52deccl 12440 . . . . . . . . . . . . . . . . . 18 12 ∈ ℕ0
67 8nn0 12244 . . . . . . . . . . . . . . . . . 18 8 ∈ ℕ0
68 8p1e9 12111 . . . . . . . . . . . . . . . . . 18 (8 + 1) = 9
69 0nn0 12236 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℕ0
70 eqid 2738 . . . . . . . . . . . . . . . . . . 19 120 = 120
71 8cn 12058 . . . . . . . . . . . . . . . . . . . 20 8 ∈ ℂ
7271addid2i 11151 . . . . . . . . . . . . . . . . . . 19 (0 + 8) = 8
7366, 69, 67, 70, 72decaddi 12485 . . . . . . . . . . . . . . . . . 18 (120 + 8) = 128
7466, 67, 68, 73decsuc 12456 . . . . . . . . . . . . . . . . 17 ((120 + 8) + 1) = 129
7564, 74eqtrdi 2794 . . . . . . . . . . . . . . . 16 (𝑘 = 2 → ((𝑘 · 64) + 1) = 129)
7675adantl 482 . . . . . . . . . . . . . . 15 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 2) → ((𝑘 · 64) + 1) = 129)
7750, 76eqtrd 2778 . . . . . . . . . . . . . 14 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 2) → 𝑃 = 129)
7877ex 413 . . . . . . . . . . . . 13 (𝑃 = ((𝑘 · 64) + 1) → (𝑘 = 2 → 𝑃 = 129))
79 simpl 483 . . . . . . . . . . . . . . 15 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 3) → 𝑃 = ((𝑘 · 64) + 1))
80 oveq1 7275 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 3 → (𝑘 · 64) = (3 · 64))
81 3nn0 12239 . . . . . . . . . . . . . . . . . . . 20 3 ∈ ℕ0
82 6t3e18 12530 . . . . . . . . . . . . . . . . . . . . 21 (6 · 3) = 18
83 3cn 12042 . . . . . . . . . . . . . . . . . . . . . 22 3 ∈ ℂ
8453, 83mulcomi 10971 . . . . . . . . . . . . . . . . . . . . 21 (6 · 3) = (3 · 6)
8582, 84eqtr3i 2768 . . . . . . . . . . . . . . . . . . . 20 18 = (3 · 6)
86 4t3e12 12523 . . . . . . . . . . . . . . . . . . . . 21 (4 · 3) = 12
8758, 83mulcomi 10971 . . . . . . . . . . . . . . . . . . . . 21 (4 · 3) = (3 · 4)
8886, 87eqtr3i 2768 . . . . . . . . . . . . . . . . . . . 20 12 = (3 · 4)
8936, 37, 81, 85, 88decmul10add 12494 . . . . . . . . . . . . . . . . . . 19 (3 · 64) = (180 + 12)
9080, 89eqtrdi 2794 . . . . . . . . . . . . . . . . . 18 (𝑘 = 3 → (𝑘 · 64) = (180 + 12))
9190oveq1d 7283 . . . . . . . . . . . . . . . . 17 (𝑘 = 3 → ((𝑘 · 64) + 1) = ((180 + 12) + 1))
92 9nn0 12245 . . . . . . . . . . . . . . . . . . 19 9 ∈ ℕ0
9365, 92deccl 12440 . . . . . . . . . . . . . . . . . 18 19 ∈ ℕ0
94 2p1e3 12103 . . . . . . . . . . . . . . . . . 18 (2 + 1) = 3
9565, 67deccl 12440 . . . . . . . . . . . . . . . . . . 19 18 ∈ ℕ0
96 eqid 2738 . . . . . . . . . . . . . . . . . . 19 180 = 180
97 eqid 2738 . . . . . . . . . . . . . . . . . . 19 12 = 12
98 eqid 2738 . . . . . . . . . . . . . . . . . . . 20 18 = 18
9965, 67, 68, 98decsuc 12456 . . . . . . . . . . . . . . . . . . 19 (18 + 1) = 19
10054addid2i 11151 . . . . . . . . . . . . . . . . . . 19 (0 + 2) = 2
10195, 69, 65, 52, 96, 97, 99, 100decadd 12479 . . . . . . . . . . . . . . . . . 18 (180 + 12) = 192
10293, 52, 94, 101decsuc 12456 . . . . . . . . . . . . . . . . 17 ((180 + 12) + 1) = 193
10391, 102eqtrdi 2794 . . . . . . . . . . . . . . . 16 (𝑘 = 3 → ((𝑘 · 64) + 1) = 193)
104103adantl 482 . . . . . . . . . . . . . . 15 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 3) → ((𝑘 · 64) + 1) = 193)
10579, 104eqtrd 2778 . . . . . . . . . . . . . 14 ((𝑃 = ((𝑘 · 64) + 1) ∧ 𝑘 = 3) → 𝑃 = 193)
106105ex 413 . . . . . . . . . . . . 13 (𝑃 = ((𝑘 · 64) + 1) → (𝑘 = 3 → 𝑃 = 193))
10749, 78, 1063orim123d 1443 . . . . . . . . . . . 12 (𝑃 = ((𝑘 · 64) + 1) → ((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))
108107a1i 11 . . . . . . . . . . 11 (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = ((𝑘 · 64) + 1) → ((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
109108com13 88 . . . . . . . . . 10 ((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) → (𝑃 = ((𝑘 · 64) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
110 fmtno4sqrt 44979 . . . . . . . . . . . . 13 (⌊‘(√‘(FermatNo‘4))) = 256
111110breq2i 5082 . . . . . . . . . . . 12 (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) ↔ 𝑃256)
112 breq1 5077 . . . . . . . . . . . . . 14 (𝑃 = ((𝑘 · 64) + 1) → (𝑃256 ↔ ((𝑘 · 64) + 1) ≤ 256))
113112adantl 482 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ‘4) ∧ 𝑃 = ((𝑘 · 64) + 1)) → (𝑃256 ↔ ((𝑘 · 64) + 1) ≤ 256))
114 eluz2 12576 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘4) ↔ (4 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 4 ≤ 𝑘))
115 6t4e24 12531 . . . . . . . . . . . . . . . . . . . . . . 23 (6 · 4) = 24
11653, 58, 115mulcomli 10972 . . . . . . . . . . . . . . . . . . . . . 22 (4 · 6) = 24
11752, 37, 43, 116decsuc 12456 . . . . . . . . . . . . . . . . . . . . 21 ((4 · 6) + 1) = 25
118 4t4e16 12524 . . . . . . . . . . . . . . . . . . . . 21 (4 · 4) = 16
11937, 36, 37, 44, 36, 65, 117, 118decmul2c 12491 . . . . . . . . . . . . . . . . . . . 20 (4 · 64) = 256
120 zre 12311 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
12138nn0rei 12232 . . . . . . . . . . . . . . . . . . . . . . . 24 64 ∈ ℝ
12236, 12decnncl 12445 . . . . . . . . . . . . . . . . . . . . . . . . 25 64 ∈ ℕ
123122nngt0i 12000 . . . . . . . . . . . . . . . . . . . . . . . 24 0 < 64
124121, 123pm3.2i 471 . . . . . . . . . . . . . . . . . . . . . . 23 (64 ∈ ℝ ∧ 0 < 64)
125124a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → (64 ∈ ℝ ∧ 0 < 64))
126 lemul1 11815 . . . . . . . . . . . . . . . . . . . . . 22 ((4 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ (64 ∈ ℝ ∧ 0 < 64)) → (4 ≤ 𝑘 ↔ (4 · 64) ≤ (𝑘 · 64)))
1274, 120, 125, 126mp3an2i 1465 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → (4 ≤ 𝑘 ↔ (4 · 64) ≤ (𝑘 · 64)))
128127biimpa 477 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 4 ≤ 𝑘) → (4 · 64) ≤ (𝑘 · 64))
129119, 128eqbrtrrid 5110 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℤ ∧ 4 ≤ 𝑘) → 256 ≤ (𝑘 · 64))
130 5nn0 12241 . . . . . . . . . . . . . . . . . . . . . . 23 5 ∈ ℕ0
13152, 130deccl 12440 . . . . . . . . . . . . . . . . . . . . . 22 25 ∈ ℕ0
132131, 36deccl 12440 . . . . . . . . . . . . . . . . . . . . 21 256 ∈ ℕ0
133132nn0zi 12333 . . . . . . . . . . . . . . . . . . . 20 256 ∈ ℤ
134 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → 𝑘 ∈ ℤ)
13538nn0zi 12333 . . . . . . . . . . . . . . . . . . . . . . 23 64 ∈ ℤ
136135a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 ∈ ℤ → 64 ∈ ℤ)
137134, 136zmulcld 12420 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → (𝑘 · 64) ∈ ℤ)
138137adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℤ ∧ 4 ≤ 𝑘) → (𝑘 · 64) ∈ ℤ)
139 zleltp1 12359 . . . . . . . . . . . . . . . . . . . 20 ((256 ∈ ℤ ∧ (𝑘 · 64) ∈ ℤ) → (256 ≤ (𝑘 · 64) ↔ 256 < ((𝑘 · 64) + 1)))
140133, 138, 139sylancr 587 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℤ ∧ 4 ≤ 𝑘) → (256 ≤ (𝑘 · 64) ↔ 256 < ((𝑘 · 64) + 1)))
141129, 140mpbid 231 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℤ ∧ 4 ≤ 𝑘) → 256 < ((𝑘 · 64) + 1))
1421413adant1 1129 . . . . . . . . . . . . . . . . 17 ((4 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 4 ≤ 𝑘) → 256 < ((𝑘 · 64) + 1))
143114, 142sylbi 216 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘4) → 256 < ((𝑘 · 64) + 1))
144132nn0rei 12232 . . . . . . . . . . . . . . . . . 18 256 ∈ ℝ
145144a1i 11 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘4) → 256 ∈ ℝ)
146 eluzelre 12581 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (ℤ‘4) → 𝑘 ∈ ℝ)
147121a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (ℤ‘4) → 64 ∈ ℝ)
148146, 147remulcld 10993 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℤ‘4) → (𝑘 · 64) ∈ ℝ)
149 peano2re 11136 . . . . . . . . . . . . . . . . . 18 ((𝑘 · 64) ∈ ℝ → ((𝑘 · 64) + 1) ∈ ℝ)
150148, 149syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘4) → ((𝑘 · 64) + 1) ∈ ℝ)
151145, 150ltnled 11110 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘4) → (256 < ((𝑘 · 64) + 1) ↔ ¬ ((𝑘 · 64) + 1) ≤ 256))
152143, 151mpbid 231 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ‘4) → ¬ ((𝑘 · 64) + 1) ≤ 256)
153152pm2.21d 121 . . . . . . . . . . . . . 14 (𝑘 ∈ (ℤ‘4) → (((𝑘 · 64) + 1) ≤ 256 → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))
154153adantr 481 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ‘4) ∧ 𝑃 = ((𝑘 · 64) + 1)) → (((𝑘 · 64) + 1) ≤ 256 → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))
155113, 154sylbid 239 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ‘4) ∧ 𝑃 = ((𝑘 · 64) + 1)) → (𝑃256 → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))
156111, 155syl5bi 241 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ‘4) ∧ 𝑃 = ((𝑘 · 64) + 1)) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))
157156ex 413 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘4) → (𝑃 = ((𝑘 · 64) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
158109, 157jaoi 854 . . . . . . . . 9 (((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)) → (𝑃 = ((𝑘 · 64) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
159158adantr 481 . . . . . . . 8 ((((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4))) → (𝑃 = ((𝑘 · 64) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
16033, 159syl5bi 241 . . . . . . 7 ((((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)) ∧ (𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4))) → (𝑃 = ((𝑘 · (2↑(4 + 2))) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
161160ex 413 . . . . . 6 (((𝑘 = 1 ∨ 𝑘 = 2 ∨ 𝑘 = 3) ∨ 𝑘 ∈ (ℤ‘4)) → ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → (𝑃 = ((𝑘 · (2↑(4 + 2))) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))))
16226, 161sylbi 216 . . . . 5 (𝑘 ∈ ℕ → ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → (𝑃 = ((𝑘 · (2↑(4 + 2))) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))))
163162com12 32 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → (𝑘 ∈ ℕ → (𝑃 = ((𝑘 · (2↑(4 + 2))) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))))
164163rexlimdv 3210 . . 3 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → (∃𝑘 ∈ ℕ 𝑃 = ((𝑘 · (2↑(4 + 2))) + 1) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))))
16510, 164mpd 15 . 2 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4)) → (𝑃 ≤ (⌊‘(√‘(FermatNo‘4))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193)))
1661653impia 1116 1 ((𝑃 ∈ ℙ ∧ 𝑃 ∥ (FermatNo‘4) ∧ 𝑃 ≤ (⌊‘(√‘(FermatNo‘4)))) → (𝑃 = 65 ∨ 𝑃 = 129 ∨ 𝑃 = 193))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3o 1085  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  cun 3885  {ctp 4566   class class class wbr 5074  cfv 6427  (class class class)co 7268  cr 10858  0cc0 10859  1c1 10860   + caddc 10862   · cmul 10864   < clt 10997  cle 10998  cn 11961  2c2 12016  3c3 12017  4c4 12018  5c5 12019  6c6 12020  8c8 12022  9c9 12023  cz 12307  cdc 12425  cuz 12570  ..^cfzo 13370  cfl 13498  cexp 13770  csqrt 14932  cdvds 15951  cprime 16364  FermatNocfmtno 44935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-inf2 9387  ax-cnex 10915  ax-resscn 10916  ax-1cn 10917  ax-icn 10918  ax-addcl 10919  ax-addrcl 10920  ax-mulcl 10921  ax-mulrcl 10922  ax-mulcom 10923  ax-addass 10924  ax-mulass 10925  ax-distr 10926  ax-i2m1 10927  ax-1ne0 10928  ax-1rid 10929  ax-rnegex 10930  ax-rrecex 10931  ax-cnre 10932  ax-pre-lttri 10933  ax-pre-lttrn 10934  ax-pre-ltadd 10935  ax-pre-mulgt0 10936  ax-pre-sup 10937
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-tp 4567  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-se 5541  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-isom 6436  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7704  df-1st 7821  df-2nd 7822  df-frecs 8085  df-wrecs 8116  df-recs 8190  df-rdg 8229  df-1o 8285  df-2o 8286  df-oadd 8289  df-er 8486  df-map 8605  df-en 8722  df-dom 8723  df-sdom 8724  df-fin 8725  df-sup 9189  df-inf 9190  df-oi 9257  df-dju 9647  df-card 9685  df-pnf 10999  df-mnf 11000  df-xr 11001  df-ltxr 11002  df-le 11003  df-sub 11195  df-neg 11196  df-div 11621  df-nn 11962  df-2 12024  df-3 12025  df-4 12026  df-5 12027  df-6 12028  df-7 12029  df-8 12030  df-9 12031  df-n0 12222  df-xnn0 12294  df-z 12308  df-dec 12426  df-uz 12571  df-q 12677  df-rp 12719  df-ioo 13071  df-ico 13073  df-fz 13228  df-fzo 13371  df-fl 13500  df-mod 13578  df-seq 13710  df-exp 13771  df-fac 13976  df-hash 14033  df-cj 14798  df-re 14799  df-im 14800  df-sqrt 14934  df-abs 14935  df-clim 15185  df-prod 15604  df-dvds 15952  df-gcd 16190  df-prm 16365  df-odz 16454  df-phi 16455  df-pc 16526  df-lgs 26431  df-fmtno 44936
This theorem is referenced by:  fmtno4prmfac193  44981
  Copyright terms: Public domain W3C validator