| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | poss 5594 | . . . 4
⊢ ((𝐹 “ 𝑥) ⊆ 𝐴 → (𝑅 Po 𝐴 → 𝑅 Po (𝐹 “ 𝑥))) | 
| 2 |  | zorn2lem.3 | . . . . 5
⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) | 
| 3 |  | zorn2lem.4 | . . . . 5
⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} | 
| 4 |  | zorn2lem.5 | . . . . 5
⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} | 
| 5 |  | zorn2lem.7 | . . . . 5
⊢ 𝐻 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧} | 
| 6 | 2, 3, 4, 5 | zorn2lem5 10540 | . . . 4
⊢ (((𝑤 We 𝐴 ∧ 𝑥 ∈ On) ∧ ∀𝑦 ∈ 𝑥 𝐻 ≠ ∅) → (𝐹 “ 𝑥) ⊆ 𝐴) | 
| 7 | 1, 6 | syl11 33 | . . 3
⊢ (𝑅 Po 𝐴 → (((𝑤 We 𝐴 ∧ 𝑥 ∈ On) ∧ ∀𝑦 ∈ 𝑥 𝐻 ≠ ∅) → 𝑅 Po (𝐹 “ 𝑥))) | 
| 8 | 2 | tfr1 8437 | . . . . . . 7
⊢ 𝐹 Fn On | 
| 9 |  | fnfun 6668 | . . . . . . 7
⊢ (𝐹 Fn On → Fun 𝐹) | 
| 10 |  | fvelima 6974 | . . . . . . . . . 10
⊢ ((Fun
𝐹 ∧ 𝑠 ∈ (𝐹 “ 𝑥)) → ∃𝑏 ∈ 𝑥 (𝐹‘𝑏) = 𝑠) | 
| 11 |  | df-rex 3071 | . . . . . . . . . 10
⊢
(∃𝑏 ∈
𝑥 (𝐹‘𝑏) = 𝑠 ↔ ∃𝑏(𝑏 ∈ 𝑥 ∧ (𝐹‘𝑏) = 𝑠)) | 
| 12 | 10, 11 | sylib 218 | . . . . . . . . 9
⊢ ((Fun
𝐹 ∧ 𝑠 ∈ (𝐹 “ 𝑥)) → ∃𝑏(𝑏 ∈ 𝑥 ∧ (𝐹‘𝑏) = 𝑠)) | 
| 13 | 12 | ex 412 | . . . . . . . 8
⊢ (Fun
𝐹 → (𝑠 ∈ (𝐹 “ 𝑥) → ∃𝑏(𝑏 ∈ 𝑥 ∧ (𝐹‘𝑏) = 𝑠))) | 
| 14 |  | fvelima 6974 | . . . . . . . . . 10
⊢ ((Fun
𝐹 ∧ 𝑟 ∈ (𝐹 “ 𝑥)) → ∃𝑎 ∈ 𝑥 (𝐹‘𝑎) = 𝑟) | 
| 15 |  | df-rex 3071 | . . . . . . . . . 10
⊢
(∃𝑎 ∈
𝑥 (𝐹‘𝑎) = 𝑟 ↔ ∃𝑎(𝑎 ∈ 𝑥 ∧ (𝐹‘𝑎) = 𝑟)) | 
| 16 | 14, 15 | sylib 218 | . . . . . . . . 9
⊢ ((Fun
𝐹 ∧ 𝑟 ∈ (𝐹 “ 𝑥)) → ∃𝑎(𝑎 ∈ 𝑥 ∧ (𝐹‘𝑎) = 𝑟)) | 
| 17 | 16 | ex 412 | . . . . . . . 8
⊢ (Fun
𝐹 → (𝑟 ∈ (𝐹 “ 𝑥) → ∃𝑎(𝑎 ∈ 𝑥 ∧ (𝐹‘𝑎) = 𝑟))) | 
| 18 | 13, 17 | anim12d 609 | . . . . . . 7
⊢ (Fun
𝐹 → ((𝑠 ∈ (𝐹 “ 𝑥) ∧ 𝑟 ∈ (𝐹 “ 𝑥)) → (∃𝑏(𝑏 ∈ 𝑥 ∧ (𝐹‘𝑏) = 𝑠) ∧ ∃𝑎(𝑎 ∈ 𝑥 ∧ (𝐹‘𝑎) = 𝑟)))) | 
| 19 | 8, 9, 18 | mp2b 10 | . . . . . 6
⊢ ((𝑠 ∈ (𝐹 “ 𝑥) ∧ 𝑟 ∈ (𝐹 “ 𝑥)) → (∃𝑏(𝑏 ∈ 𝑥 ∧ (𝐹‘𝑏) = 𝑠) ∧ ∃𝑎(𝑎 ∈ 𝑥 ∧ (𝐹‘𝑎) = 𝑟))) | 
| 20 |  | an4 656 | . . . . . . . 8
⊢ (((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) ∧ ((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟)) ↔ ((𝑏 ∈ 𝑥 ∧ (𝐹‘𝑏) = 𝑠) ∧ (𝑎 ∈ 𝑥 ∧ (𝐹‘𝑎) = 𝑟))) | 
| 21 | 20 | 2exbii 1849 | . . . . . . 7
⊢
(∃𝑏∃𝑎((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) ∧ ((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟)) ↔ ∃𝑏∃𝑎((𝑏 ∈ 𝑥 ∧ (𝐹‘𝑏) = 𝑠) ∧ (𝑎 ∈ 𝑥 ∧ (𝐹‘𝑎) = 𝑟))) | 
| 22 |  | exdistrv 1955 | . . . . . . 7
⊢
(∃𝑏∃𝑎((𝑏 ∈ 𝑥 ∧ (𝐹‘𝑏) = 𝑠) ∧ (𝑎 ∈ 𝑥 ∧ (𝐹‘𝑎) = 𝑟)) ↔ (∃𝑏(𝑏 ∈ 𝑥 ∧ (𝐹‘𝑏) = 𝑠) ∧ ∃𝑎(𝑎 ∈ 𝑥 ∧ (𝐹‘𝑎) = 𝑟))) | 
| 23 | 21, 22 | bitri 275 | . . . . . 6
⊢
(∃𝑏∃𝑎((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) ∧ ((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟)) ↔ (∃𝑏(𝑏 ∈ 𝑥 ∧ (𝐹‘𝑏) = 𝑠) ∧ ∃𝑎(𝑎 ∈ 𝑥 ∧ (𝐹‘𝑎) = 𝑟))) | 
| 24 | 19, 23 | sylibr 234 | . . . . 5
⊢ ((𝑠 ∈ (𝐹 “ 𝑥) ∧ 𝑟 ∈ (𝐹 “ 𝑥)) → ∃𝑏∃𝑎((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) ∧ ((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟))) | 
| 25 | 5 | neeq1i 3005 | . . . . . . . . . 10
⊢ (𝐻 ≠ ∅ ↔ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧} ≠ ∅) | 
| 26 | 25 | ralbii 3093 | . . . . . . . . 9
⊢
(∀𝑦 ∈
𝑥 𝐻 ≠ ∅ ↔ ∀𝑦 ∈ 𝑥 {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧} ≠ ∅) | 
| 27 |  | imaeq2 6074 | . . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑏 → (𝐹 “ 𝑦) = (𝐹 “ 𝑏)) | 
| 28 | 27 | raleqdv 3326 | . . . . . . . . . . . . 13
⊢ (𝑦 = 𝑏 → (∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧)) | 
| 29 | 28 | rabbidv 3444 | . . . . . . . . . . . 12
⊢ (𝑦 = 𝑏 → {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧} = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧}) | 
| 30 | 29 | neeq1d 3000 | . . . . . . . . . . 11
⊢ (𝑦 = 𝑏 → ({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧} ≠ ∅ ↔ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅)) | 
| 31 | 30 | rspccv 3619 | . . . . . . . . . 10
⊢
(∀𝑦 ∈
𝑥 {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧} ≠ ∅ → (𝑏 ∈ 𝑥 → {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅)) | 
| 32 |  | imaeq2 6074 | . . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑎 → (𝐹 “ 𝑦) = (𝐹 “ 𝑎)) | 
| 33 | 32 | raleqdv 3326 | . . . . . . . . . . . . 13
⊢ (𝑦 = 𝑎 → (∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧)) | 
| 34 | 33 | rabbidv 3444 | . . . . . . . . . . . 12
⊢ (𝑦 = 𝑎 → {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧} = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧}) | 
| 35 | 34 | neeq1d 3000 | . . . . . . . . . . 11
⊢ (𝑦 = 𝑎 → ({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧} ≠ ∅ ↔ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅)) | 
| 36 | 35 | rspccv 3619 | . . . . . . . . . 10
⊢
(∀𝑦 ∈
𝑥 {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧} ≠ ∅ → (𝑎 ∈ 𝑥 → {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅)) | 
| 37 | 31, 36 | anim12d 609 | . . . . . . . . 9
⊢
(∀𝑦 ∈
𝑥 {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧} ≠ ∅ → ((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) → ({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅))) | 
| 38 | 26, 37 | sylbi 217 | . . . . . . . 8
⊢
(∀𝑦 ∈
𝑥 𝐻 ≠ ∅ → ((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) → ({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅))) | 
| 39 |  | onelon 6409 | . . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ On ∧ 𝑏 ∈ 𝑥) → 𝑏 ∈ On) | 
| 40 |  | onelon 6409 | . . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ On ∧ 𝑎 ∈ 𝑥) → 𝑎 ∈ On) | 
| 41 | 39, 40 | anim12dan 619 | . . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ On ∧ (𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥)) → (𝑏 ∈ On ∧ 𝑎 ∈ On)) | 
| 42 | 41 | ex 412 | . . . . . . . . . . . . 13
⊢ (𝑥 ∈ On → ((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) → (𝑏 ∈ On ∧ 𝑎 ∈ On))) | 
| 43 |  | eloni 6394 | . . . . . . . . . . . . . . . . 17
⊢ (𝑏 ∈ On → Ord 𝑏) | 
| 44 |  | eloni 6394 | . . . . . . . . . . . . . . . . 17
⊢ (𝑎 ∈ On → Ord 𝑎) | 
| 45 |  | ordtri3or 6416 | . . . . . . . . . . . . . . . . 17
⊢ ((Ord
𝑏 ∧ Ord 𝑎) → (𝑏 ∈ 𝑎 ∨ 𝑏 = 𝑎 ∨ 𝑎 ∈ 𝑏)) | 
| 46 | 43, 44, 45 | syl2an 596 | . . . . . . . . . . . . . . . 16
⊢ ((𝑏 ∈ On ∧ 𝑎 ∈ On) → (𝑏 ∈ 𝑎 ∨ 𝑏 = 𝑎 ∨ 𝑎 ∈ 𝑏)) | 
| 47 |  | eqid 2737 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} | 
| 48 | 2, 3, 47 | zorn2lem2 10537 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑎 ∈ On ∧ (𝑤 We 𝐴 ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅)) → (𝑏 ∈ 𝑎 → (𝐹‘𝑏)𝑅(𝐹‘𝑎))) | 
| 49 | 48 | adantll 714 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅)) → (𝑏 ∈ 𝑎 → (𝐹‘𝑏)𝑅(𝐹‘𝑎))) | 
| 50 |  | breq12 5148 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → ((𝐹‘𝑏)𝑅(𝐹‘𝑎) ↔ 𝑠𝑅𝑟)) | 
| 51 | 50 | biimpcd 249 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹‘𝑏)𝑅(𝐹‘𝑎) → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → 𝑠𝑅𝑟)) | 
| 52 | 49, 51 | syl6 35 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅)) → (𝑏 ∈ 𝑎 → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → 𝑠𝑅𝑟))) | 
| 53 | 52 | com23 86 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅)) → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → (𝑏 ∈ 𝑎 → 𝑠𝑅𝑟))) | 
| 54 | 53 | adantrrl 724 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅))) → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → (𝑏 ∈ 𝑎 → 𝑠𝑅𝑟))) | 
| 55 | 54 | imp 406 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅))) ∧ ((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟)) → (𝑏 ∈ 𝑎 → 𝑠𝑅𝑟)) | 
| 56 |  | fveq2 6906 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = 𝑎 → (𝐹‘𝑏) = (𝐹‘𝑎)) | 
| 57 |  | eqeq12 2754 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → ((𝐹‘𝑏) = (𝐹‘𝑎) ↔ 𝑠 = 𝑟)) | 
| 58 | 56, 57 | imbitrid 244 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → (𝑏 = 𝑎 → 𝑠 = 𝑟)) | 
| 59 | 58 | adantl 481 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅))) ∧ ((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟)) → (𝑏 = 𝑎 → 𝑠 = 𝑟)) | 
| 60 |  | eqid 2737 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} | 
| 61 | 2, 3, 60 | zorn2lem2 10537 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑏 ∈ On ∧ (𝑤 We 𝐴 ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅)) → (𝑎 ∈ 𝑏 → (𝐹‘𝑎)𝑅(𝐹‘𝑏))) | 
| 62 | 61 | adantlr 715 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅)) → (𝑎 ∈ 𝑏 → (𝐹‘𝑎)𝑅(𝐹‘𝑏))) | 
| 63 |  | breq12 5148 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐹‘𝑎) = 𝑟 ∧ (𝐹‘𝑏) = 𝑠) → ((𝐹‘𝑎)𝑅(𝐹‘𝑏) ↔ 𝑟𝑅𝑠)) | 
| 64 | 63 | ancoms 458 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → ((𝐹‘𝑎)𝑅(𝐹‘𝑏) ↔ 𝑟𝑅𝑠)) | 
| 65 | 64 | biimpcd 249 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹‘𝑎)𝑅(𝐹‘𝑏) → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → 𝑟𝑅𝑠)) | 
| 66 | 62, 65 | syl6 35 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅)) → (𝑎 ∈ 𝑏 → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → 𝑟𝑅𝑠))) | 
| 67 | 66 | com23 86 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅)) → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → (𝑎 ∈ 𝑏 → 𝑟𝑅𝑠))) | 
| 68 | 67 | adantrrr 725 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅))) → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → (𝑎 ∈ 𝑏 → 𝑟𝑅𝑠))) | 
| 69 | 68 | imp 406 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅))) ∧ ((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟)) → (𝑎 ∈ 𝑏 → 𝑟𝑅𝑠)) | 
| 70 | 55, 59, 69 | 3orim123d 1446 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅))) ∧ ((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟)) → ((𝑏 ∈ 𝑎 ∨ 𝑏 = 𝑎 ∨ 𝑎 ∈ 𝑏) → (𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠))) | 
| 71 | 46, 70 | syl5 34 | . . . . . . . . . . . . . . 15
⊢ ((((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅))) ∧ ((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟)) → ((𝑏 ∈ On ∧ 𝑎 ∈ On) → (𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠))) | 
| 72 | 71 | exp31 419 | . . . . . . . . . . . . . 14
⊢ ((𝑏 ∈ On ∧ 𝑎 ∈ On) → ((𝑤 We 𝐴 ∧ ({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅)) → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → ((𝑏 ∈ On ∧ 𝑎 ∈ On) → (𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠))))) | 
| 73 | 72 | com4r 94 | . . . . . . . . . . . . 13
⊢ ((𝑏 ∈ On ∧ 𝑎 ∈ On) → ((𝑏 ∈ On ∧ 𝑎 ∈ On) → ((𝑤 We 𝐴 ∧ ({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅)) → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → (𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠))))) | 
| 74 | 42, 42, 73 | syl6c 70 | . . . . . . . . . . . 12
⊢ (𝑥 ∈ On → ((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) → ((𝑤 We 𝐴 ∧ ({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅)) → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → (𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠))))) | 
| 75 | 74 | exp4a 431 | . . . . . . . . . . 11
⊢ (𝑥 ∈ On → ((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) → (𝑤 We 𝐴 → (({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅) → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → (𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠)))))) | 
| 76 | 75 | com3r 87 | . . . . . . . . . 10
⊢ (𝑤 We 𝐴 → (𝑥 ∈ On → ((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) → (({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅) → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → (𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠)))))) | 
| 77 | 76 | imp 406 | . . . . . . . . 9
⊢ ((𝑤 We 𝐴 ∧ 𝑥 ∈ On) → ((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) → (({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅) → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → (𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠))))) | 
| 78 | 77 | a2d 29 | . . . . . . . 8
⊢ ((𝑤 We 𝐴 ∧ 𝑥 ∈ On) → (((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) → ({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅)) → ((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → (𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠))))) | 
| 79 | 38, 78 | syl5 34 | . . . . . . 7
⊢ ((𝑤 We 𝐴 ∧ 𝑥 ∈ On) → (∀𝑦 ∈ 𝑥 𝐻 ≠ ∅ → ((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → (𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠))))) | 
| 80 | 79 | imp4b 421 | . . . . . 6
⊢ (((𝑤 We 𝐴 ∧ 𝑥 ∈ On) ∧ ∀𝑦 ∈ 𝑥 𝐻 ≠ ∅) → (((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) ∧ ((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟)) → (𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠))) | 
| 81 | 80 | exlimdvv 1934 | . . . . 5
⊢ (((𝑤 We 𝐴 ∧ 𝑥 ∈ On) ∧ ∀𝑦 ∈ 𝑥 𝐻 ≠ ∅) → (∃𝑏∃𝑎((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) ∧ ((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟)) → (𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠))) | 
| 82 | 24, 81 | syl5 34 | . . . 4
⊢ (((𝑤 We 𝐴 ∧ 𝑥 ∈ On) ∧ ∀𝑦 ∈ 𝑥 𝐻 ≠ ∅) → ((𝑠 ∈ (𝐹 “ 𝑥) ∧ 𝑟 ∈ (𝐹 “ 𝑥)) → (𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠))) | 
| 83 | 82 | ralrimivv 3200 | . . 3
⊢ (((𝑤 We 𝐴 ∧ 𝑥 ∈ On) ∧ ∀𝑦 ∈ 𝑥 𝐻 ≠ ∅) → ∀𝑠 ∈ (𝐹 “ 𝑥)∀𝑟 ∈ (𝐹 “ 𝑥)(𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠)) | 
| 84 | 7, 83 | jca2 513 | . 2
⊢ (𝑅 Po 𝐴 → (((𝑤 We 𝐴 ∧ 𝑥 ∈ On) ∧ ∀𝑦 ∈ 𝑥 𝐻 ≠ ∅) → (𝑅 Po (𝐹 “ 𝑥) ∧ ∀𝑠 ∈ (𝐹 “ 𝑥)∀𝑟 ∈ (𝐹 “ 𝑥)(𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠)))) | 
| 85 |  | df-so 5593 | . 2
⊢ (𝑅 Or (𝐹 “ 𝑥) ↔ (𝑅 Po (𝐹 “ 𝑥) ∧ ∀𝑠 ∈ (𝐹 “ 𝑥)∀𝑟 ∈ (𝐹 “ 𝑥)(𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠))) | 
| 86 | 84, 85 | imbitrrdi 252 | 1
⊢ (𝑅 Po 𝐴 → (((𝑤 We 𝐴 ∧ 𝑥 ∈ On) ∧ ∀𝑦 ∈ 𝑥 𝐻 ≠ ∅) → 𝑅 Or (𝐹 “ 𝑥))) |