MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem6 Structured version   Visualization version   GIF version

Theorem zorn2lem6 10498
Description: Lemma for zorn2 10503. (Contributed by NM, 4-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
zorn2lem.4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
zorn2lem.5 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
zorn2lem.7 𝐻 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧}
Assertion
Ref Expression
zorn2lem6 (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → 𝑅 Or (𝐹𝑥)))
Distinct variable groups:   𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐴   𝐷,𝑓,𝑢,𝑣,𝑦   𝑓,𝐹,𝑔,𝑢,𝑣,𝑥,𝑦,𝑧   𝑅,𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑣,𝐶   𝑥,𝐻,𝑢,𝑣,𝑓
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤,𝑢,𝑓,𝑔)   𝐷(𝑥,𝑧,𝑤,𝑔)   𝐹(𝑤)   𝐻(𝑦,𝑧,𝑤,𝑔)

Proof of Theorem zorn2lem6
Dummy variables 𝑎 𝑏 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poss 5590 . . . 4 ((𝐹𝑥) ⊆ 𝐴 → (𝑅 Po 𝐴𝑅 Po (𝐹𝑥)))
2 zorn2lem.3 . . . . 5 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
3 zorn2lem.4 . . . . 5 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
4 zorn2lem.5 . . . . 5 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
5 zorn2lem.7 . . . . 5 𝐻 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧}
62, 3, 4, 5zorn2lem5 10497 . . . 4 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝐹𝑥) ⊆ 𝐴)
71, 6syl11 33 . . 3 (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → 𝑅 Po (𝐹𝑥)))
82tfr1 8399 . . . . . . 7 𝐹 Fn On
9 fnfun 6649 . . . . . . 7 (𝐹 Fn On → Fun 𝐹)
10 fvelima 6957 . . . . . . . . . 10 ((Fun 𝐹𝑠 ∈ (𝐹𝑥)) → ∃𝑏𝑥 (𝐹𝑏) = 𝑠)
11 df-rex 3071 . . . . . . . . . 10 (∃𝑏𝑥 (𝐹𝑏) = 𝑠 ↔ ∃𝑏(𝑏𝑥 ∧ (𝐹𝑏) = 𝑠))
1210, 11sylib 217 . . . . . . . . 9 ((Fun 𝐹𝑠 ∈ (𝐹𝑥)) → ∃𝑏(𝑏𝑥 ∧ (𝐹𝑏) = 𝑠))
1312ex 413 . . . . . . . 8 (Fun 𝐹 → (𝑠 ∈ (𝐹𝑥) → ∃𝑏(𝑏𝑥 ∧ (𝐹𝑏) = 𝑠)))
14 fvelima 6957 . . . . . . . . . 10 ((Fun 𝐹𝑟 ∈ (𝐹𝑥)) → ∃𝑎𝑥 (𝐹𝑎) = 𝑟)
15 df-rex 3071 . . . . . . . . . 10 (∃𝑎𝑥 (𝐹𝑎) = 𝑟 ↔ ∃𝑎(𝑎𝑥 ∧ (𝐹𝑎) = 𝑟))
1614, 15sylib 217 . . . . . . . . 9 ((Fun 𝐹𝑟 ∈ (𝐹𝑥)) → ∃𝑎(𝑎𝑥 ∧ (𝐹𝑎) = 𝑟))
1716ex 413 . . . . . . . 8 (Fun 𝐹 → (𝑟 ∈ (𝐹𝑥) → ∃𝑎(𝑎𝑥 ∧ (𝐹𝑎) = 𝑟)))
1813, 17anim12d 609 . . . . . . 7 (Fun 𝐹 → ((𝑠 ∈ (𝐹𝑥) ∧ 𝑟 ∈ (𝐹𝑥)) → (∃𝑏(𝑏𝑥 ∧ (𝐹𝑏) = 𝑠) ∧ ∃𝑎(𝑎𝑥 ∧ (𝐹𝑎) = 𝑟))))
198, 9, 18mp2b 10 . . . . . 6 ((𝑠 ∈ (𝐹𝑥) ∧ 𝑟 ∈ (𝐹𝑥)) → (∃𝑏(𝑏𝑥 ∧ (𝐹𝑏) = 𝑠) ∧ ∃𝑎(𝑎𝑥 ∧ (𝐹𝑎) = 𝑟)))
20 an4 654 . . . . . . . 8 (((𝑏𝑥𝑎𝑥) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) ↔ ((𝑏𝑥 ∧ (𝐹𝑏) = 𝑠) ∧ (𝑎𝑥 ∧ (𝐹𝑎) = 𝑟)))
21202exbii 1851 . . . . . . 7 (∃𝑏𝑎((𝑏𝑥𝑎𝑥) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) ↔ ∃𝑏𝑎((𝑏𝑥 ∧ (𝐹𝑏) = 𝑠) ∧ (𝑎𝑥 ∧ (𝐹𝑎) = 𝑟)))
22 exdistrv 1959 . . . . . . 7 (∃𝑏𝑎((𝑏𝑥 ∧ (𝐹𝑏) = 𝑠) ∧ (𝑎𝑥 ∧ (𝐹𝑎) = 𝑟)) ↔ (∃𝑏(𝑏𝑥 ∧ (𝐹𝑏) = 𝑠) ∧ ∃𝑎(𝑎𝑥 ∧ (𝐹𝑎) = 𝑟)))
2321, 22bitri 274 . . . . . 6 (∃𝑏𝑎((𝑏𝑥𝑎𝑥) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) ↔ (∃𝑏(𝑏𝑥 ∧ (𝐹𝑏) = 𝑠) ∧ ∃𝑎(𝑎𝑥 ∧ (𝐹𝑎) = 𝑟)))
2419, 23sylibr 233 . . . . 5 ((𝑠 ∈ (𝐹𝑥) ∧ 𝑟 ∈ (𝐹𝑥)) → ∃𝑏𝑎((𝑏𝑥𝑎𝑥) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)))
255neeq1i 3005 . . . . . . . . . 10 (𝐻 ≠ ∅ ↔ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} ≠ ∅)
2625ralbii 3093 . . . . . . . . 9 (∀𝑦𝑥 𝐻 ≠ ∅ ↔ ∀𝑦𝑥 {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} ≠ ∅)
27 imaeq2 6055 . . . . . . . . . . . . . 14 (𝑦 = 𝑏 → (𝐹𝑦) = (𝐹𝑏))
2827raleqdv 3325 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → (∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧))
2928rabbidv 3440 . . . . . . . . . . . 12 (𝑦 = 𝑏 → {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧})
3029neeq1d 3000 . . . . . . . . . . 11 (𝑦 = 𝑏 → ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} ≠ ∅ ↔ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅))
3130rspccv 3609 . . . . . . . . . 10 (∀𝑦𝑥 {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} ≠ ∅ → (𝑏𝑥 → {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅))
32 imaeq2 6055 . . . . . . . . . . . . . 14 (𝑦 = 𝑎 → (𝐹𝑦) = (𝐹𝑎))
3332raleqdv 3325 . . . . . . . . . . . . 13 (𝑦 = 𝑎 → (∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧))
3433rabbidv 3440 . . . . . . . . . . . 12 (𝑦 = 𝑎 → {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧})
3534neeq1d 3000 . . . . . . . . . . 11 (𝑦 = 𝑎 → ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} ≠ ∅ ↔ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))
3635rspccv 3609 . . . . . . . . . 10 (∀𝑦𝑥 {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} ≠ ∅ → (𝑎𝑥 → {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))
3731, 36anim12d 609 . . . . . . . . 9 (∀𝑦𝑥 {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} ≠ ∅ → ((𝑏𝑥𝑎𝑥) → ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)))
3826, 37sylbi 216 . . . . . . . 8 (∀𝑦𝑥 𝐻 ≠ ∅ → ((𝑏𝑥𝑎𝑥) → ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)))
39 onelon 6389 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑏𝑥) → 𝑏 ∈ On)
40 onelon 6389 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑎𝑥) → 𝑎 ∈ On)
4139, 40anim12dan 619 . . . . . . . . . . . . . 14 ((𝑥 ∈ On ∧ (𝑏𝑥𝑎𝑥)) → (𝑏 ∈ On ∧ 𝑎 ∈ On))
4241ex 413 . . . . . . . . . . . . 13 (𝑥 ∈ On → ((𝑏𝑥𝑎𝑥) → (𝑏 ∈ On ∧ 𝑎 ∈ On)))
43 eloni 6374 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ On → Ord 𝑏)
44 eloni 6374 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ On → Ord 𝑎)
45 ordtri3or 6396 . . . . . . . . . . . . . . . . 17 ((Ord 𝑏 ∧ Ord 𝑎) → (𝑏𝑎𝑏 = 𝑎𝑎𝑏))
4643, 44, 45syl2an 596 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ On ∧ 𝑎 ∈ On) → (𝑏𝑎𝑏 = 𝑎𝑎𝑏))
47 eqid 2732 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧}
482, 3, 47zorn2lem2 10494 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ On ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → (𝑏𝑎 → (𝐹𝑏)𝑅(𝐹𝑎)))
4948adantll 712 . . . . . . . . . . . . . . . . . . . . 21 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → (𝑏𝑎 → (𝐹𝑏)𝑅(𝐹𝑎)))
50 breq12 5153 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → ((𝐹𝑏)𝑅(𝐹𝑎) ↔ 𝑠𝑅𝑟))
5150biimpcd 248 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑏)𝑅(𝐹𝑎) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → 𝑠𝑅𝑟))
5249, 51syl6 35 . . . . . . . . . . . . . . . . . . . 20 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → (𝑏𝑎 → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → 𝑠𝑅𝑟)))
5352com23 86 . . . . . . . . . . . . . . . . . . 19 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑏𝑎𝑠𝑅𝑟)))
5453adantrrl 722 . . . . . . . . . . . . . . . . . 18 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑏𝑎𝑠𝑅𝑟)))
5554imp 407 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) → (𝑏𝑎𝑠𝑅𝑟))
56 fveq2 6891 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑎 → (𝐹𝑏) = (𝐹𝑎))
57 eqeq12 2749 . . . . . . . . . . . . . . . . . . 19 (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → ((𝐹𝑏) = (𝐹𝑎) ↔ 𝑠 = 𝑟))
5856, 57imbitrid 243 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑏 = 𝑎𝑠 = 𝑟))
5958adantl 482 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) → (𝑏 = 𝑎𝑠 = 𝑟))
60 eqid 2732 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧}
612, 3, 60zorn2lem2 10494 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑏 ∈ On ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅)) → (𝑎𝑏 → (𝐹𝑎)𝑅(𝐹𝑏)))
6261adantlr 713 . . . . . . . . . . . . . . . . . . . . 21 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅)) → (𝑎𝑏 → (𝐹𝑎)𝑅(𝐹𝑏)))
63 breq12 5153 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹𝑎) = 𝑟 ∧ (𝐹𝑏) = 𝑠) → ((𝐹𝑎)𝑅(𝐹𝑏) ↔ 𝑟𝑅𝑠))
6463ancoms 459 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → ((𝐹𝑎)𝑅(𝐹𝑏) ↔ 𝑟𝑅𝑠))
6564biimpcd 248 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑎)𝑅(𝐹𝑏) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → 𝑟𝑅𝑠))
6662, 65syl6 35 . . . . . . . . . . . . . . . . . . . 20 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅)) → (𝑎𝑏 → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → 𝑟𝑅𝑠)))
6766com23 86 . . . . . . . . . . . . . . . . . . 19 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅)) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑎𝑏𝑟𝑅𝑠)))
6867adantrrr 723 . . . . . . . . . . . . . . . . . 18 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑎𝑏𝑟𝑅𝑠)))
6968imp 407 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) → (𝑎𝑏𝑟𝑅𝑠))
7055, 59, 693orim123d 1444 . . . . . . . . . . . . . . . 16 ((((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) → ((𝑏𝑎𝑏 = 𝑎𝑎𝑏) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))
7146, 70syl5 34 . . . . . . . . . . . . . . 15 ((((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) → ((𝑏 ∈ On ∧ 𝑎 ∈ On) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))
7271exp31 420 . . . . . . . . . . . . . 14 ((𝑏 ∈ On ∧ 𝑎 ∈ On) → ((𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → ((𝑏 ∈ On ∧ 𝑎 ∈ On) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))))
7372com4r 94 . . . . . . . . . . . . 13 ((𝑏 ∈ On ∧ 𝑎 ∈ On) → ((𝑏 ∈ On ∧ 𝑎 ∈ On) → ((𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))))
7442, 42, 73syl6c 70 . . . . . . . . . . . 12 (𝑥 ∈ On → ((𝑏𝑥𝑎𝑥) → ((𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))))
7574exp4a 432 . . . . . . . . . . 11 (𝑥 ∈ On → ((𝑏𝑥𝑎𝑥) → (𝑤 We 𝐴 → (({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠))))))
7675com3r 87 . . . . . . . . . 10 (𝑤 We 𝐴 → (𝑥 ∈ On → ((𝑏𝑥𝑎𝑥) → (({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠))))))
7776imp 407 . . . . . . . . 9 ((𝑤 We 𝐴𝑥 ∈ On) → ((𝑏𝑥𝑎𝑥) → (({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))))
7877a2d 29 . . . . . . . 8 ((𝑤 We 𝐴𝑥 ∈ On) → (((𝑏𝑥𝑎𝑥) → ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → ((𝑏𝑥𝑎𝑥) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))))
7938, 78syl5 34 . . . . . . 7 ((𝑤 We 𝐴𝑥 ∈ On) → (∀𝑦𝑥 𝐻 ≠ ∅ → ((𝑏𝑥𝑎𝑥) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))))
8079imp4b 422 . . . . . 6 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (((𝑏𝑥𝑎𝑥) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))
8180exlimdvv 1937 . . . . 5 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (∃𝑏𝑎((𝑏𝑥𝑎𝑥) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))
8224, 81syl5 34 . . . 4 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → ((𝑠 ∈ (𝐹𝑥) ∧ 𝑟 ∈ (𝐹𝑥)) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))
8382ralrimivv 3198 . . 3 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → ∀𝑠 ∈ (𝐹𝑥)∀𝑟 ∈ (𝐹𝑥)(𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠))
847, 83jca2 514 . 2 (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝑅 Po (𝐹𝑥) ∧ ∀𝑠 ∈ (𝐹𝑥)∀𝑟 ∈ (𝐹𝑥)(𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠))))
85 df-so 5589 . 2 (𝑅 Or (𝐹𝑥) ↔ (𝑅 Po (𝐹𝑥) ∧ ∀𝑠 ∈ (𝐹𝑥)∀𝑟 ∈ (𝐹𝑥)(𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))
8684, 85imbitrrdi 251 1 (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → 𝑅 Or (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3o 1086   = wceq 1541  wex 1781  wcel 2106  wne 2940  wral 3061  wrex 3070  {crab 3432  Vcvv 3474  wss 3948  c0 4322   class class class wbr 5148  cmpt 5231   Po wpo 5586   Or wor 5587   We wwe 5630  ran crn 5677  cima 5679  Ord word 6363  Oncon0 6364  Fun wfun 6537   Fn wfn 6538  cfv 6543  crio 7366  recscrecs 8372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373
This theorem is referenced by:  zorn2lem7  10499
  Copyright terms: Public domain W3C validator