Step | Hyp | Ref
| Expression |
1 | | poss 5470 |
. . . 4
⊢ ((𝐹 “ 𝑥) ⊆ 𝐴 → (𝑅 Po 𝐴 → 𝑅 Po (𝐹 “ 𝑥))) |
2 | | zorn2lem.3 |
. . . . 5
⊢ 𝐹 = recs((𝑓 ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑤𝑣))) |
3 | | zorn2lem.4 |
. . . . 5
⊢ 𝐶 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧} |
4 | | zorn2lem.5 |
. . . . 5
⊢ 𝐷 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑥)𝑔𝑅𝑧} |
5 | | zorn2lem.7 |
. . . . 5
⊢ 𝐻 = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧} |
6 | 2, 3, 4, 5 | zorn2lem5 10114 |
. . . 4
⊢ (((𝑤 We 𝐴 ∧ 𝑥 ∈ On) ∧ ∀𝑦 ∈ 𝑥 𝐻 ≠ ∅) → (𝐹 “ 𝑥) ⊆ 𝐴) |
7 | 1, 6 | syl11 33 |
. . 3
⊢ (𝑅 Po 𝐴 → (((𝑤 We 𝐴 ∧ 𝑥 ∈ On) ∧ ∀𝑦 ∈ 𝑥 𝐻 ≠ ∅) → 𝑅 Po (𝐹 “ 𝑥))) |
8 | 2 | tfr1 8133 |
. . . . . . 7
⊢ 𝐹 Fn On |
9 | | fnfun 6479 |
. . . . . . 7
⊢ (𝐹 Fn On → Fun 𝐹) |
10 | | fvelima 6778 |
. . . . . . . . . 10
⊢ ((Fun
𝐹 ∧ 𝑠 ∈ (𝐹 “ 𝑥)) → ∃𝑏 ∈ 𝑥 (𝐹‘𝑏) = 𝑠) |
11 | | df-rex 3067 |
. . . . . . . . . 10
⊢
(∃𝑏 ∈
𝑥 (𝐹‘𝑏) = 𝑠 ↔ ∃𝑏(𝑏 ∈ 𝑥 ∧ (𝐹‘𝑏) = 𝑠)) |
12 | 10, 11 | sylib 221 |
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ 𝑠 ∈ (𝐹 “ 𝑥)) → ∃𝑏(𝑏 ∈ 𝑥 ∧ (𝐹‘𝑏) = 𝑠)) |
13 | 12 | ex 416 |
. . . . . . . 8
⊢ (Fun
𝐹 → (𝑠 ∈ (𝐹 “ 𝑥) → ∃𝑏(𝑏 ∈ 𝑥 ∧ (𝐹‘𝑏) = 𝑠))) |
14 | | fvelima 6778 |
. . . . . . . . . 10
⊢ ((Fun
𝐹 ∧ 𝑟 ∈ (𝐹 “ 𝑥)) → ∃𝑎 ∈ 𝑥 (𝐹‘𝑎) = 𝑟) |
15 | | df-rex 3067 |
. . . . . . . . . 10
⊢
(∃𝑎 ∈
𝑥 (𝐹‘𝑎) = 𝑟 ↔ ∃𝑎(𝑎 ∈ 𝑥 ∧ (𝐹‘𝑎) = 𝑟)) |
16 | 14, 15 | sylib 221 |
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ 𝑟 ∈ (𝐹 “ 𝑥)) → ∃𝑎(𝑎 ∈ 𝑥 ∧ (𝐹‘𝑎) = 𝑟)) |
17 | 16 | ex 416 |
. . . . . . . 8
⊢ (Fun
𝐹 → (𝑟 ∈ (𝐹 “ 𝑥) → ∃𝑎(𝑎 ∈ 𝑥 ∧ (𝐹‘𝑎) = 𝑟))) |
18 | 13, 17 | anim12d 612 |
. . . . . . 7
⊢ (Fun
𝐹 → ((𝑠 ∈ (𝐹 “ 𝑥) ∧ 𝑟 ∈ (𝐹 “ 𝑥)) → (∃𝑏(𝑏 ∈ 𝑥 ∧ (𝐹‘𝑏) = 𝑠) ∧ ∃𝑎(𝑎 ∈ 𝑥 ∧ (𝐹‘𝑎) = 𝑟)))) |
19 | 8, 9, 18 | mp2b 10 |
. . . . . 6
⊢ ((𝑠 ∈ (𝐹 “ 𝑥) ∧ 𝑟 ∈ (𝐹 “ 𝑥)) → (∃𝑏(𝑏 ∈ 𝑥 ∧ (𝐹‘𝑏) = 𝑠) ∧ ∃𝑎(𝑎 ∈ 𝑥 ∧ (𝐹‘𝑎) = 𝑟))) |
20 | | an4 656 |
. . . . . . . 8
⊢ (((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) ∧ ((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟)) ↔ ((𝑏 ∈ 𝑥 ∧ (𝐹‘𝑏) = 𝑠) ∧ (𝑎 ∈ 𝑥 ∧ (𝐹‘𝑎) = 𝑟))) |
21 | 20 | 2exbii 1856 |
. . . . . . 7
⊢
(∃𝑏∃𝑎((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) ∧ ((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟)) ↔ ∃𝑏∃𝑎((𝑏 ∈ 𝑥 ∧ (𝐹‘𝑏) = 𝑠) ∧ (𝑎 ∈ 𝑥 ∧ (𝐹‘𝑎) = 𝑟))) |
22 | | exdistrv 1964 |
. . . . . . 7
⊢
(∃𝑏∃𝑎((𝑏 ∈ 𝑥 ∧ (𝐹‘𝑏) = 𝑠) ∧ (𝑎 ∈ 𝑥 ∧ (𝐹‘𝑎) = 𝑟)) ↔ (∃𝑏(𝑏 ∈ 𝑥 ∧ (𝐹‘𝑏) = 𝑠) ∧ ∃𝑎(𝑎 ∈ 𝑥 ∧ (𝐹‘𝑎) = 𝑟))) |
23 | 21, 22 | bitri 278 |
. . . . . 6
⊢
(∃𝑏∃𝑎((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) ∧ ((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟)) ↔ (∃𝑏(𝑏 ∈ 𝑥 ∧ (𝐹‘𝑏) = 𝑠) ∧ ∃𝑎(𝑎 ∈ 𝑥 ∧ (𝐹‘𝑎) = 𝑟))) |
24 | 19, 23 | sylibr 237 |
. . . . 5
⊢ ((𝑠 ∈ (𝐹 “ 𝑥) ∧ 𝑟 ∈ (𝐹 “ 𝑥)) → ∃𝑏∃𝑎((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) ∧ ((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟))) |
25 | 5 | neeq1i 3005 |
. . . . . . . . . 10
⊢ (𝐻 ≠ ∅ ↔ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧} ≠ ∅) |
26 | 25 | ralbii 3088 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝑥 𝐻 ≠ ∅ ↔ ∀𝑦 ∈ 𝑥 {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧} ≠ ∅) |
27 | | imaeq2 5925 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑏 → (𝐹 “ 𝑦) = (𝐹 “ 𝑏)) |
28 | 27 | raleqdv 3325 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑏 → (∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧)) |
29 | 28 | rabbidv 3390 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑏 → {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧} = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧}) |
30 | 29 | neeq1d 3000 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑏 → ({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧} ≠ ∅ ↔ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅)) |
31 | 30 | rspccv 3534 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
𝑥 {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧} ≠ ∅ → (𝑏 ∈ 𝑥 → {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅)) |
32 | | imaeq2 5925 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑎 → (𝐹 “ 𝑦) = (𝐹 “ 𝑎)) |
33 | 32 | raleqdv 3325 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑎 → (∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧)) |
34 | 33 | rabbidv 3390 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑎 → {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧} = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧}) |
35 | 34 | neeq1d 3000 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑎 → ({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧} ≠ ∅ ↔ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅)) |
36 | 35 | rspccv 3534 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
𝑥 {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧} ≠ ∅ → (𝑎 ∈ 𝑥 → {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅)) |
37 | 31, 36 | anim12d 612 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
𝑥 {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑦)𝑔𝑅𝑧} ≠ ∅ → ((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) → ({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅))) |
38 | 26, 37 | sylbi 220 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝑥 𝐻 ≠ ∅ → ((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) → ({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅))) |
39 | | onelon 6238 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ On ∧ 𝑏 ∈ 𝑥) → 𝑏 ∈ On) |
40 | | onelon 6238 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ On ∧ 𝑎 ∈ 𝑥) → 𝑎 ∈ On) |
41 | 39, 40 | anim12dan 622 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ On ∧ (𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥)) → (𝑏 ∈ On ∧ 𝑎 ∈ On)) |
42 | 41 | ex 416 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ On → ((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) → (𝑏 ∈ On ∧ 𝑎 ∈ On))) |
43 | | eloni 6223 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 ∈ On → Ord 𝑏) |
44 | | eloni 6223 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 ∈ On → Ord 𝑎) |
45 | | ordtri3or 6245 |
. . . . . . . . . . . . . . . . 17
⊢ ((Ord
𝑏 ∧ Ord 𝑎) → (𝑏 ∈ 𝑎 ∨ 𝑏 = 𝑎 ∨ 𝑎 ∈ 𝑏)) |
46 | 43, 44, 45 | syl2an 599 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 ∈ On ∧ 𝑎 ∈ On) → (𝑏 ∈ 𝑎 ∨ 𝑏 = 𝑎 ∨ 𝑎 ∈ 𝑏)) |
47 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} |
48 | 2, 3, 47 | zorn2lem2 10111 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑎 ∈ On ∧ (𝑤 We 𝐴 ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅)) → (𝑏 ∈ 𝑎 → (𝐹‘𝑏)𝑅(𝐹‘𝑎))) |
49 | 48 | adantll 714 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅)) → (𝑏 ∈ 𝑎 → (𝐹‘𝑏)𝑅(𝐹‘𝑎))) |
50 | | breq12 5058 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → ((𝐹‘𝑏)𝑅(𝐹‘𝑎) ↔ 𝑠𝑅𝑟)) |
51 | 50 | biimpcd 252 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹‘𝑏)𝑅(𝐹‘𝑎) → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → 𝑠𝑅𝑟)) |
52 | 49, 51 | syl6 35 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅)) → (𝑏 ∈ 𝑎 → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → 𝑠𝑅𝑟))) |
53 | 52 | com23 86 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅)) → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → (𝑏 ∈ 𝑎 → 𝑠𝑅𝑟))) |
54 | 53 | adantrrl 724 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅))) → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → (𝑏 ∈ 𝑎 → 𝑠𝑅𝑟))) |
55 | 54 | imp 410 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅))) ∧ ((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟)) → (𝑏 ∈ 𝑎 → 𝑠𝑅𝑟)) |
56 | | fveq2 6717 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = 𝑎 → (𝐹‘𝑏) = (𝐹‘𝑎)) |
57 | | eqeq12 2754 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → ((𝐹‘𝑏) = (𝐹‘𝑎) ↔ 𝑠 = 𝑟)) |
58 | 56, 57 | syl5ib 247 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → (𝑏 = 𝑎 → 𝑠 = 𝑟)) |
59 | 58 | adantl 485 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅))) ∧ ((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟)) → (𝑏 = 𝑎 → 𝑠 = 𝑟)) |
60 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} = {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} |
61 | 2, 3, 60 | zorn2lem2 10111 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑏 ∈ On ∧ (𝑤 We 𝐴 ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅)) → (𝑎 ∈ 𝑏 → (𝐹‘𝑎)𝑅(𝐹‘𝑏))) |
62 | 61 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅)) → (𝑎 ∈ 𝑏 → (𝐹‘𝑎)𝑅(𝐹‘𝑏))) |
63 | | breq12 5058 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐹‘𝑎) = 𝑟 ∧ (𝐹‘𝑏) = 𝑠) → ((𝐹‘𝑎)𝑅(𝐹‘𝑏) ↔ 𝑟𝑅𝑠)) |
64 | 63 | ancoms 462 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → ((𝐹‘𝑎)𝑅(𝐹‘𝑏) ↔ 𝑟𝑅𝑠)) |
65 | 64 | biimpcd 252 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹‘𝑎)𝑅(𝐹‘𝑏) → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → 𝑟𝑅𝑠)) |
66 | 62, 65 | syl6 35 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅)) → (𝑎 ∈ 𝑏 → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → 𝑟𝑅𝑠))) |
67 | 66 | com23 86 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅)) → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → (𝑎 ∈ 𝑏 → 𝑟𝑅𝑠))) |
68 | 67 | adantrrr 725 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅))) → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → (𝑎 ∈ 𝑏 → 𝑟𝑅𝑠))) |
69 | 68 | imp 410 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅))) ∧ ((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟)) → (𝑎 ∈ 𝑏 → 𝑟𝑅𝑠)) |
70 | 55, 59, 69 | 3orim123d 1446 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅))) ∧ ((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟)) → ((𝑏 ∈ 𝑎 ∨ 𝑏 = 𝑎 ∨ 𝑎 ∈ 𝑏) → (𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠))) |
71 | 46, 70 | syl5 34 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅))) ∧ ((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟)) → ((𝑏 ∈ On ∧ 𝑎 ∈ On) → (𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠))) |
72 | 71 | exp31 423 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 ∈ On ∧ 𝑎 ∈ On) → ((𝑤 We 𝐴 ∧ ({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅)) → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → ((𝑏 ∈ On ∧ 𝑎 ∈ On) → (𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠))))) |
73 | 72 | com4r 94 |
. . . . . . . . . . . . 13
⊢ ((𝑏 ∈ On ∧ 𝑎 ∈ On) → ((𝑏 ∈ On ∧ 𝑎 ∈ On) → ((𝑤 We 𝐴 ∧ ({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅)) → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → (𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠))))) |
74 | 42, 42, 73 | syl6c 70 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ On → ((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) → ((𝑤 We 𝐴 ∧ ({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅)) → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → (𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠))))) |
75 | 74 | exp4a 435 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ On → ((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) → (𝑤 We 𝐴 → (({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅) → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → (𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠)))))) |
76 | 75 | com3r 87 |
. . . . . . . . . 10
⊢ (𝑤 We 𝐴 → (𝑥 ∈ On → ((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) → (({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅) → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → (𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠)))))) |
77 | 76 | imp 410 |
. . . . . . . . 9
⊢ ((𝑤 We 𝐴 ∧ 𝑥 ∈ On) → ((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) → (({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅) → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → (𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠))))) |
78 | 77 | a2d 29 |
. . . . . . . 8
⊢ ((𝑤 We 𝐴 ∧ 𝑥 ∈ On) → (((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) → ({𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧 ∈ 𝐴 ∣ ∀𝑔 ∈ (𝐹 “ 𝑎)𝑔𝑅𝑧} ≠ ∅)) → ((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → (𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠))))) |
79 | 38, 78 | syl5 34 |
. . . . . . 7
⊢ ((𝑤 We 𝐴 ∧ 𝑥 ∈ On) → (∀𝑦 ∈ 𝑥 𝐻 ≠ ∅ → ((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) → (((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟) → (𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠))))) |
80 | 79 | imp4b 425 |
. . . . . 6
⊢ (((𝑤 We 𝐴 ∧ 𝑥 ∈ On) ∧ ∀𝑦 ∈ 𝑥 𝐻 ≠ ∅) → (((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) ∧ ((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟)) → (𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠))) |
81 | 80 | exlimdvv 1942 |
. . . . 5
⊢ (((𝑤 We 𝐴 ∧ 𝑥 ∈ On) ∧ ∀𝑦 ∈ 𝑥 𝐻 ≠ ∅) → (∃𝑏∃𝑎((𝑏 ∈ 𝑥 ∧ 𝑎 ∈ 𝑥) ∧ ((𝐹‘𝑏) = 𝑠 ∧ (𝐹‘𝑎) = 𝑟)) → (𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠))) |
82 | 24, 81 | syl5 34 |
. . . 4
⊢ (((𝑤 We 𝐴 ∧ 𝑥 ∈ On) ∧ ∀𝑦 ∈ 𝑥 𝐻 ≠ ∅) → ((𝑠 ∈ (𝐹 “ 𝑥) ∧ 𝑟 ∈ (𝐹 “ 𝑥)) → (𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠))) |
83 | 82 | ralrimivv 3111 |
. . 3
⊢ (((𝑤 We 𝐴 ∧ 𝑥 ∈ On) ∧ ∀𝑦 ∈ 𝑥 𝐻 ≠ ∅) → ∀𝑠 ∈ (𝐹 “ 𝑥)∀𝑟 ∈ (𝐹 “ 𝑥)(𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠)) |
84 | 7, 83 | jca2 517 |
. 2
⊢ (𝑅 Po 𝐴 → (((𝑤 We 𝐴 ∧ 𝑥 ∈ On) ∧ ∀𝑦 ∈ 𝑥 𝐻 ≠ ∅) → (𝑅 Po (𝐹 “ 𝑥) ∧ ∀𝑠 ∈ (𝐹 “ 𝑥)∀𝑟 ∈ (𝐹 “ 𝑥)(𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠)))) |
85 | | df-so 5469 |
. 2
⊢ (𝑅 Or (𝐹 “ 𝑥) ↔ (𝑅 Po (𝐹 “ 𝑥) ∧ ∀𝑠 ∈ (𝐹 “ 𝑥)∀𝑟 ∈ (𝐹 “ 𝑥)(𝑠𝑅𝑟 ∨ 𝑠 = 𝑟 ∨ 𝑟𝑅𝑠))) |
86 | 84, 85 | syl6ibr 255 |
1
⊢ (𝑅 Po 𝐴 → (((𝑤 We 𝐴 ∧ 𝑥 ∈ On) ∧ ∀𝑦 ∈ 𝑥 𝐻 ≠ ∅) → 𝑅 Or (𝐹 “ 𝑥))) |