MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem6 Structured version   Visualization version   GIF version

Theorem zorn2lem6 10257
Description: Lemma for zorn2 10262. (Contributed by NM, 4-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
zorn2lem.4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
zorn2lem.5 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
zorn2lem.7 𝐻 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧}
Assertion
Ref Expression
zorn2lem6 (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → 𝑅 Or (𝐹𝑥)))
Distinct variable groups:   𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐴   𝐷,𝑓,𝑢,𝑣,𝑦   𝑓,𝐹,𝑔,𝑢,𝑣,𝑥,𝑦,𝑧   𝑅,𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑣,𝐶   𝑥,𝐻,𝑢,𝑣,𝑓
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤,𝑢,𝑓,𝑔)   𝐷(𝑥,𝑧,𝑤,𝑔)   𝐹(𝑤)   𝐻(𝑦,𝑧,𝑤,𝑔)

Proof of Theorem zorn2lem6
Dummy variables 𝑎 𝑏 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poss 5505 . . . 4 ((𝐹𝑥) ⊆ 𝐴 → (𝑅 Po 𝐴𝑅 Po (𝐹𝑥)))
2 zorn2lem.3 . . . . 5 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
3 zorn2lem.4 . . . . 5 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
4 zorn2lem.5 . . . . 5 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
5 zorn2lem.7 . . . . 5 𝐻 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧}
62, 3, 4, 5zorn2lem5 10256 . . . 4 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝐹𝑥) ⊆ 𝐴)
71, 6syl11 33 . . 3 (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → 𝑅 Po (𝐹𝑥)))
82tfr1 8228 . . . . . . 7 𝐹 Fn On
9 fnfun 6533 . . . . . . 7 (𝐹 Fn On → Fun 𝐹)
10 fvelima 6835 . . . . . . . . . 10 ((Fun 𝐹𝑠 ∈ (𝐹𝑥)) → ∃𝑏𝑥 (𝐹𝑏) = 𝑠)
11 df-rex 3070 . . . . . . . . . 10 (∃𝑏𝑥 (𝐹𝑏) = 𝑠 ↔ ∃𝑏(𝑏𝑥 ∧ (𝐹𝑏) = 𝑠))
1210, 11sylib 217 . . . . . . . . 9 ((Fun 𝐹𝑠 ∈ (𝐹𝑥)) → ∃𝑏(𝑏𝑥 ∧ (𝐹𝑏) = 𝑠))
1312ex 413 . . . . . . . 8 (Fun 𝐹 → (𝑠 ∈ (𝐹𝑥) → ∃𝑏(𝑏𝑥 ∧ (𝐹𝑏) = 𝑠)))
14 fvelima 6835 . . . . . . . . . 10 ((Fun 𝐹𝑟 ∈ (𝐹𝑥)) → ∃𝑎𝑥 (𝐹𝑎) = 𝑟)
15 df-rex 3070 . . . . . . . . . 10 (∃𝑎𝑥 (𝐹𝑎) = 𝑟 ↔ ∃𝑎(𝑎𝑥 ∧ (𝐹𝑎) = 𝑟))
1614, 15sylib 217 . . . . . . . . 9 ((Fun 𝐹𝑟 ∈ (𝐹𝑥)) → ∃𝑎(𝑎𝑥 ∧ (𝐹𝑎) = 𝑟))
1716ex 413 . . . . . . . 8 (Fun 𝐹 → (𝑟 ∈ (𝐹𝑥) → ∃𝑎(𝑎𝑥 ∧ (𝐹𝑎) = 𝑟)))
1813, 17anim12d 609 . . . . . . 7 (Fun 𝐹 → ((𝑠 ∈ (𝐹𝑥) ∧ 𝑟 ∈ (𝐹𝑥)) → (∃𝑏(𝑏𝑥 ∧ (𝐹𝑏) = 𝑠) ∧ ∃𝑎(𝑎𝑥 ∧ (𝐹𝑎) = 𝑟))))
198, 9, 18mp2b 10 . . . . . 6 ((𝑠 ∈ (𝐹𝑥) ∧ 𝑟 ∈ (𝐹𝑥)) → (∃𝑏(𝑏𝑥 ∧ (𝐹𝑏) = 𝑠) ∧ ∃𝑎(𝑎𝑥 ∧ (𝐹𝑎) = 𝑟)))
20 an4 653 . . . . . . . 8 (((𝑏𝑥𝑎𝑥) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) ↔ ((𝑏𝑥 ∧ (𝐹𝑏) = 𝑠) ∧ (𝑎𝑥 ∧ (𝐹𝑎) = 𝑟)))
21202exbii 1851 . . . . . . 7 (∃𝑏𝑎((𝑏𝑥𝑎𝑥) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) ↔ ∃𝑏𝑎((𝑏𝑥 ∧ (𝐹𝑏) = 𝑠) ∧ (𝑎𝑥 ∧ (𝐹𝑎) = 𝑟)))
22 exdistrv 1959 . . . . . . 7 (∃𝑏𝑎((𝑏𝑥 ∧ (𝐹𝑏) = 𝑠) ∧ (𝑎𝑥 ∧ (𝐹𝑎) = 𝑟)) ↔ (∃𝑏(𝑏𝑥 ∧ (𝐹𝑏) = 𝑠) ∧ ∃𝑎(𝑎𝑥 ∧ (𝐹𝑎) = 𝑟)))
2321, 22bitri 274 . . . . . 6 (∃𝑏𝑎((𝑏𝑥𝑎𝑥) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) ↔ (∃𝑏(𝑏𝑥 ∧ (𝐹𝑏) = 𝑠) ∧ ∃𝑎(𝑎𝑥 ∧ (𝐹𝑎) = 𝑟)))
2419, 23sylibr 233 . . . . 5 ((𝑠 ∈ (𝐹𝑥) ∧ 𝑟 ∈ (𝐹𝑥)) → ∃𝑏𝑎((𝑏𝑥𝑎𝑥) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)))
255neeq1i 3008 . . . . . . . . . 10 (𝐻 ≠ ∅ ↔ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} ≠ ∅)
2625ralbii 3092 . . . . . . . . 9 (∀𝑦𝑥 𝐻 ≠ ∅ ↔ ∀𝑦𝑥 {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} ≠ ∅)
27 imaeq2 5965 . . . . . . . . . . . . . 14 (𝑦 = 𝑏 → (𝐹𝑦) = (𝐹𝑏))
2827raleqdv 3348 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → (∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧))
2928rabbidv 3414 . . . . . . . . . . . 12 (𝑦 = 𝑏 → {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧})
3029neeq1d 3003 . . . . . . . . . . 11 (𝑦 = 𝑏 → ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} ≠ ∅ ↔ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅))
3130rspccv 3558 . . . . . . . . . 10 (∀𝑦𝑥 {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} ≠ ∅ → (𝑏𝑥 → {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅))
32 imaeq2 5965 . . . . . . . . . . . . . 14 (𝑦 = 𝑎 → (𝐹𝑦) = (𝐹𝑎))
3332raleqdv 3348 . . . . . . . . . . . . 13 (𝑦 = 𝑎 → (∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧))
3433rabbidv 3414 . . . . . . . . . . . 12 (𝑦 = 𝑎 → {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧})
3534neeq1d 3003 . . . . . . . . . . 11 (𝑦 = 𝑎 → ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} ≠ ∅ ↔ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))
3635rspccv 3558 . . . . . . . . . 10 (∀𝑦𝑥 {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} ≠ ∅ → (𝑎𝑥 → {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))
3731, 36anim12d 609 . . . . . . . . 9 (∀𝑦𝑥 {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} ≠ ∅ → ((𝑏𝑥𝑎𝑥) → ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)))
3826, 37sylbi 216 . . . . . . . 8 (∀𝑦𝑥 𝐻 ≠ ∅ → ((𝑏𝑥𝑎𝑥) → ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)))
39 onelon 6291 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑏𝑥) → 𝑏 ∈ On)
40 onelon 6291 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑎𝑥) → 𝑎 ∈ On)
4139, 40anim12dan 619 . . . . . . . . . . . . . 14 ((𝑥 ∈ On ∧ (𝑏𝑥𝑎𝑥)) → (𝑏 ∈ On ∧ 𝑎 ∈ On))
4241ex 413 . . . . . . . . . . . . 13 (𝑥 ∈ On → ((𝑏𝑥𝑎𝑥) → (𝑏 ∈ On ∧ 𝑎 ∈ On)))
43 eloni 6276 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ On → Ord 𝑏)
44 eloni 6276 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ On → Ord 𝑎)
45 ordtri3or 6298 . . . . . . . . . . . . . . . . 17 ((Ord 𝑏 ∧ Ord 𝑎) → (𝑏𝑎𝑏 = 𝑎𝑎𝑏))
4643, 44, 45syl2an 596 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ On ∧ 𝑎 ∈ On) → (𝑏𝑎𝑏 = 𝑎𝑎𝑏))
47 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧}
482, 3, 47zorn2lem2 10253 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ On ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → (𝑏𝑎 → (𝐹𝑏)𝑅(𝐹𝑎)))
4948adantll 711 . . . . . . . . . . . . . . . . . . . . 21 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → (𝑏𝑎 → (𝐹𝑏)𝑅(𝐹𝑎)))
50 breq12 5079 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → ((𝐹𝑏)𝑅(𝐹𝑎) ↔ 𝑠𝑅𝑟))
5150biimpcd 248 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑏)𝑅(𝐹𝑎) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → 𝑠𝑅𝑟))
5249, 51syl6 35 . . . . . . . . . . . . . . . . . . . 20 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → (𝑏𝑎 → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → 𝑠𝑅𝑟)))
5352com23 86 . . . . . . . . . . . . . . . . . . 19 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑏𝑎𝑠𝑅𝑟)))
5453adantrrl 721 . . . . . . . . . . . . . . . . . 18 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑏𝑎𝑠𝑅𝑟)))
5554imp 407 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) → (𝑏𝑎𝑠𝑅𝑟))
56 fveq2 6774 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑎 → (𝐹𝑏) = (𝐹𝑎))
57 eqeq12 2755 . . . . . . . . . . . . . . . . . . 19 (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → ((𝐹𝑏) = (𝐹𝑎) ↔ 𝑠 = 𝑟))
5856, 57syl5ib 243 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑏 = 𝑎𝑠 = 𝑟))
5958adantl 482 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) → (𝑏 = 𝑎𝑠 = 𝑟))
60 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧}
612, 3, 60zorn2lem2 10253 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑏 ∈ On ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅)) → (𝑎𝑏 → (𝐹𝑎)𝑅(𝐹𝑏)))
6261adantlr 712 . . . . . . . . . . . . . . . . . . . . 21 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅)) → (𝑎𝑏 → (𝐹𝑎)𝑅(𝐹𝑏)))
63 breq12 5079 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹𝑎) = 𝑟 ∧ (𝐹𝑏) = 𝑠) → ((𝐹𝑎)𝑅(𝐹𝑏) ↔ 𝑟𝑅𝑠))
6463ancoms 459 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → ((𝐹𝑎)𝑅(𝐹𝑏) ↔ 𝑟𝑅𝑠))
6564biimpcd 248 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑎)𝑅(𝐹𝑏) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → 𝑟𝑅𝑠))
6662, 65syl6 35 . . . . . . . . . . . . . . . . . . . 20 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅)) → (𝑎𝑏 → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → 𝑟𝑅𝑠)))
6766com23 86 . . . . . . . . . . . . . . . . . . 19 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅)) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑎𝑏𝑟𝑅𝑠)))
6867adantrrr 722 . . . . . . . . . . . . . . . . . 18 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑎𝑏𝑟𝑅𝑠)))
6968imp 407 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) → (𝑎𝑏𝑟𝑅𝑠))
7055, 59, 693orim123d 1443 . . . . . . . . . . . . . . . 16 ((((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) → ((𝑏𝑎𝑏 = 𝑎𝑎𝑏) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))
7146, 70syl5 34 . . . . . . . . . . . . . . 15 ((((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) → ((𝑏 ∈ On ∧ 𝑎 ∈ On) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))
7271exp31 420 . . . . . . . . . . . . . 14 ((𝑏 ∈ On ∧ 𝑎 ∈ On) → ((𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → ((𝑏 ∈ On ∧ 𝑎 ∈ On) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))))
7372com4r 94 . . . . . . . . . . . . 13 ((𝑏 ∈ On ∧ 𝑎 ∈ On) → ((𝑏 ∈ On ∧ 𝑎 ∈ On) → ((𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))))
7442, 42, 73syl6c 70 . . . . . . . . . . . 12 (𝑥 ∈ On → ((𝑏𝑥𝑎𝑥) → ((𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))))
7574exp4a 432 . . . . . . . . . . 11 (𝑥 ∈ On → ((𝑏𝑥𝑎𝑥) → (𝑤 We 𝐴 → (({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠))))))
7675com3r 87 . . . . . . . . . 10 (𝑤 We 𝐴 → (𝑥 ∈ On → ((𝑏𝑥𝑎𝑥) → (({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠))))))
7776imp 407 . . . . . . . . 9 ((𝑤 We 𝐴𝑥 ∈ On) → ((𝑏𝑥𝑎𝑥) → (({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))))
7877a2d 29 . . . . . . . 8 ((𝑤 We 𝐴𝑥 ∈ On) → (((𝑏𝑥𝑎𝑥) → ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → ((𝑏𝑥𝑎𝑥) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))))
7938, 78syl5 34 . . . . . . 7 ((𝑤 We 𝐴𝑥 ∈ On) → (∀𝑦𝑥 𝐻 ≠ ∅ → ((𝑏𝑥𝑎𝑥) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))))
8079imp4b 422 . . . . . 6 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (((𝑏𝑥𝑎𝑥) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))
8180exlimdvv 1937 . . . . 5 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (∃𝑏𝑎((𝑏𝑥𝑎𝑥) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))
8224, 81syl5 34 . . . 4 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → ((𝑠 ∈ (𝐹𝑥) ∧ 𝑟 ∈ (𝐹𝑥)) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))
8382ralrimivv 3122 . . 3 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → ∀𝑠 ∈ (𝐹𝑥)∀𝑟 ∈ (𝐹𝑥)(𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠))
847, 83jca2 514 . 2 (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝑅 Po (𝐹𝑥) ∧ ∀𝑠 ∈ (𝐹𝑥)∀𝑟 ∈ (𝐹𝑥)(𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠))))
85 df-so 5504 . 2 (𝑅 Or (𝐹𝑥) ↔ (𝑅 Po (𝐹𝑥) ∧ ∀𝑠 ∈ (𝐹𝑥)∀𝑟 ∈ (𝐹𝑥)(𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))
8684, 85syl6ibr 251 1 (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → 𝑅 Or (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3o 1085   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  wss 3887  c0 4256   class class class wbr 5074  cmpt 5157   Po wpo 5501   Or wor 5502   We wwe 5543  ran crn 5590  cima 5592  Ord word 6265  Oncon0 6266  Fun wfun 6427   Fn wfn 6428  cfv 6433  crio 7231  recscrecs 8201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202
This theorem is referenced by:  zorn2lem7  10258
  Copyright terms: Public domain W3C validator