MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem6 Structured version   Visualization version   GIF version

Theorem zorn2lem6 9922
Description: Lemma for zorn2 9927. (Contributed by NM, 4-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
zorn2lem.4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
zorn2lem.5 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
zorn2lem.7 𝐻 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧}
Assertion
Ref Expression
zorn2lem6 (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → 𝑅 Or (𝐹𝑥)))
Distinct variable groups:   𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐴   𝐷,𝑓,𝑢,𝑣,𝑦   𝑓,𝐹,𝑔,𝑢,𝑣,𝑥,𝑦,𝑧   𝑅,𝑓,𝑔,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑣,𝐶   𝑥,𝐻,𝑢,𝑣,𝑓
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤,𝑢,𝑓,𝑔)   𝐷(𝑥,𝑧,𝑤,𝑔)   𝐹(𝑤)   𝐻(𝑦,𝑧,𝑤,𝑔)

Proof of Theorem zorn2lem6
Dummy variables 𝑎 𝑏 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poss 5475 . . . 4 ((𝐹𝑥) ⊆ 𝐴 → (𝑅 Po 𝐴𝑅 Po (𝐹𝑥)))
2 zorn2lem.3 . . . . 5 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
3 zorn2lem.4 . . . . 5 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
4 zorn2lem.5 . . . . 5 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
5 zorn2lem.7 . . . . 5 𝐻 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧}
62, 3, 4, 5zorn2lem5 9921 . . . 4 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝐹𝑥) ⊆ 𝐴)
71, 6syl11 33 . . 3 (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → 𝑅 Po (𝐹𝑥)))
82tfr1 8032 . . . . . . 7 𝐹 Fn On
9 fnfun 6452 . . . . . . 7 (𝐹 Fn On → Fun 𝐹)
10 fvelima 6730 . . . . . . . . . 10 ((Fun 𝐹𝑠 ∈ (𝐹𝑥)) → ∃𝑏𝑥 (𝐹𝑏) = 𝑠)
11 df-rex 3144 . . . . . . . . . 10 (∃𝑏𝑥 (𝐹𝑏) = 𝑠 ↔ ∃𝑏(𝑏𝑥 ∧ (𝐹𝑏) = 𝑠))
1210, 11sylib 220 . . . . . . . . 9 ((Fun 𝐹𝑠 ∈ (𝐹𝑥)) → ∃𝑏(𝑏𝑥 ∧ (𝐹𝑏) = 𝑠))
1312ex 415 . . . . . . . 8 (Fun 𝐹 → (𝑠 ∈ (𝐹𝑥) → ∃𝑏(𝑏𝑥 ∧ (𝐹𝑏) = 𝑠)))
14 fvelima 6730 . . . . . . . . . 10 ((Fun 𝐹𝑟 ∈ (𝐹𝑥)) → ∃𝑎𝑥 (𝐹𝑎) = 𝑟)
15 df-rex 3144 . . . . . . . . . 10 (∃𝑎𝑥 (𝐹𝑎) = 𝑟 ↔ ∃𝑎(𝑎𝑥 ∧ (𝐹𝑎) = 𝑟))
1614, 15sylib 220 . . . . . . . . 9 ((Fun 𝐹𝑟 ∈ (𝐹𝑥)) → ∃𝑎(𝑎𝑥 ∧ (𝐹𝑎) = 𝑟))
1716ex 415 . . . . . . . 8 (Fun 𝐹 → (𝑟 ∈ (𝐹𝑥) → ∃𝑎(𝑎𝑥 ∧ (𝐹𝑎) = 𝑟)))
1813, 17anim12d 610 . . . . . . 7 (Fun 𝐹 → ((𝑠 ∈ (𝐹𝑥) ∧ 𝑟 ∈ (𝐹𝑥)) → (∃𝑏(𝑏𝑥 ∧ (𝐹𝑏) = 𝑠) ∧ ∃𝑎(𝑎𝑥 ∧ (𝐹𝑎) = 𝑟))))
198, 9, 18mp2b 10 . . . . . 6 ((𝑠 ∈ (𝐹𝑥) ∧ 𝑟 ∈ (𝐹𝑥)) → (∃𝑏(𝑏𝑥 ∧ (𝐹𝑏) = 𝑠) ∧ ∃𝑎(𝑎𝑥 ∧ (𝐹𝑎) = 𝑟)))
20 an4 654 . . . . . . . 8 (((𝑏𝑥𝑎𝑥) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) ↔ ((𝑏𝑥 ∧ (𝐹𝑏) = 𝑠) ∧ (𝑎𝑥 ∧ (𝐹𝑎) = 𝑟)))
21202exbii 1845 . . . . . . 7 (∃𝑏𝑎((𝑏𝑥𝑎𝑥) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) ↔ ∃𝑏𝑎((𝑏𝑥 ∧ (𝐹𝑏) = 𝑠) ∧ (𝑎𝑥 ∧ (𝐹𝑎) = 𝑟)))
22 exdistrv 1952 . . . . . . 7 (∃𝑏𝑎((𝑏𝑥 ∧ (𝐹𝑏) = 𝑠) ∧ (𝑎𝑥 ∧ (𝐹𝑎) = 𝑟)) ↔ (∃𝑏(𝑏𝑥 ∧ (𝐹𝑏) = 𝑠) ∧ ∃𝑎(𝑎𝑥 ∧ (𝐹𝑎) = 𝑟)))
2321, 22bitri 277 . . . . . 6 (∃𝑏𝑎((𝑏𝑥𝑎𝑥) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) ↔ (∃𝑏(𝑏𝑥 ∧ (𝐹𝑏) = 𝑠) ∧ ∃𝑎(𝑎𝑥 ∧ (𝐹𝑎) = 𝑟)))
2419, 23sylibr 236 . . . . 5 ((𝑠 ∈ (𝐹𝑥) ∧ 𝑟 ∈ (𝐹𝑥)) → ∃𝑏𝑎((𝑏𝑥𝑎𝑥) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)))
255neeq1i 3080 . . . . . . . . . 10 (𝐻 ≠ ∅ ↔ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} ≠ ∅)
2625ralbii 3165 . . . . . . . . 9 (∀𝑦𝑥 𝐻 ≠ ∅ ↔ ∀𝑦𝑥 {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} ≠ ∅)
27 imaeq2 5924 . . . . . . . . . . . . . 14 (𝑦 = 𝑏 → (𝐹𝑦) = (𝐹𝑏))
2827raleqdv 3415 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → (∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧))
2928rabbidv 3480 . . . . . . . . . . . 12 (𝑦 = 𝑏 → {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧})
3029neeq1d 3075 . . . . . . . . . . 11 (𝑦 = 𝑏 → ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} ≠ ∅ ↔ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅))
3130rspccv 3619 . . . . . . . . . 10 (∀𝑦𝑥 {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} ≠ ∅ → (𝑏𝑥 → {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅))
32 imaeq2 5924 . . . . . . . . . . . . . 14 (𝑦 = 𝑎 → (𝐹𝑦) = (𝐹𝑎))
3332raleqdv 3415 . . . . . . . . . . . . 13 (𝑦 = 𝑎 → (∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧))
3433rabbidv 3480 . . . . . . . . . . . 12 (𝑦 = 𝑎 → {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧})
3534neeq1d 3075 . . . . . . . . . . 11 (𝑦 = 𝑎 → ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} ≠ ∅ ↔ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))
3635rspccv 3619 . . . . . . . . . 10 (∀𝑦𝑥 {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} ≠ ∅ → (𝑎𝑥 → {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))
3731, 36anim12d 610 . . . . . . . . 9 (∀𝑦𝑥 {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧} ≠ ∅ → ((𝑏𝑥𝑎𝑥) → ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)))
3826, 37sylbi 219 . . . . . . . 8 (∀𝑦𝑥 𝐻 ≠ ∅ → ((𝑏𝑥𝑎𝑥) → ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)))
39 onelon 6215 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑏𝑥) → 𝑏 ∈ On)
40 onelon 6215 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑎𝑥) → 𝑎 ∈ On)
4139, 40anim12dan 620 . . . . . . . . . . . . . 14 ((𝑥 ∈ On ∧ (𝑏𝑥𝑎𝑥)) → (𝑏 ∈ On ∧ 𝑎 ∈ On))
4241ex 415 . . . . . . . . . . . . 13 (𝑥 ∈ On → ((𝑏𝑥𝑎𝑥) → (𝑏 ∈ On ∧ 𝑎 ∈ On)))
43 eloni 6200 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ On → Ord 𝑏)
44 eloni 6200 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ On → Ord 𝑎)
45 ordtri3or 6222 . . . . . . . . . . . . . . . . 17 ((Ord 𝑏 ∧ Ord 𝑎) → (𝑏𝑎𝑏 = 𝑎𝑎𝑏))
4643, 44, 45syl2an 597 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ On ∧ 𝑎 ∈ On) → (𝑏𝑎𝑏 = 𝑎𝑎𝑏))
47 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧}
482, 3, 47zorn2lem2 9918 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑎 ∈ On ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → (𝑏𝑎 → (𝐹𝑏)𝑅(𝐹𝑎)))
4948adantll 712 . . . . . . . . . . . . . . . . . . . . 21 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → (𝑏𝑎 → (𝐹𝑏)𝑅(𝐹𝑎)))
50 breq12 5070 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → ((𝐹𝑏)𝑅(𝐹𝑎) ↔ 𝑠𝑅𝑟))
5150biimpcd 251 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑏)𝑅(𝐹𝑎) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → 𝑠𝑅𝑟))
5249, 51syl6 35 . . . . . . . . . . . . . . . . . . . 20 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → (𝑏𝑎 → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → 𝑠𝑅𝑟)))
5352com23 86 . . . . . . . . . . . . . . . . . . 19 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑏𝑎𝑠𝑅𝑟)))
5453adantrrl 722 . . . . . . . . . . . . . . . . . 18 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑏𝑎𝑠𝑅𝑟)))
5554imp 409 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) → (𝑏𝑎𝑠𝑅𝑟))
56 fveq2 6669 . . . . . . . . . . . . . . . . . . 19 (𝑏 = 𝑎 → (𝐹𝑏) = (𝐹𝑎))
57 eqeq12 2835 . . . . . . . . . . . . . . . . . . 19 (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → ((𝐹𝑏) = (𝐹𝑎) ↔ 𝑠 = 𝑟))
5856, 57syl5ib 246 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑏 = 𝑎𝑠 = 𝑟))
5958adantl 484 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) → (𝑏 = 𝑎𝑠 = 𝑟))
60 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . 23 {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧}
612, 3, 60zorn2lem2 9918 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑏 ∈ On ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅)) → (𝑎𝑏 → (𝐹𝑎)𝑅(𝐹𝑏)))
6261adantlr 713 . . . . . . . . . . . . . . . . . . . . 21 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅)) → (𝑎𝑏 → (𝐹𝑎)𝑅(𝐹𝑏)))
63 breq12 5070 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹𝑎) = 𝑟 ∧ (𝐹𝑏) = 𝑠) → ((𝐹𝑎)𝑅(𝐹𝑏) ↔ 𝑟𝑅𝑠))
6463ancoms 461 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → ((𝐹𝑎)𝑅(𝐹𝑏) ↔ 𝑟𝑅𝑠))
6564biimpcd 251 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑎)𝑅(𝐹𝑏) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → 𝑟𝑅𝑠))
6662, 65syl6 35 . . . . . . . . . . . . . . . . . . . 20 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅)) → (𝑎𝑏 → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → 𝑟𝑅𝑠)))
6766com23 86 . . . . . . . . . . . . . . . . . . 19 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅)) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑎𝑏𝑟𝑅𝑠)))
6867adantrrr 723 . . . . . . . . . . . . . . . . . 18 (((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑎𝑏𝑟𝑅𝑠)))
6968imp 409 . . . . . . . . . . . . . . . . 17 ((((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) → (𝑎𝑏𝑟𝑅𝑠))
7055, 59, 693orim123d 1440 . . . . . . . . . . . . . . . 16 ((((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) → ((𝑏𝑎𝑏 = 𝑎𝑎𝑏) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))
7146, 70syl5 34 . . . . . . . . . . . . . . 15 ((((𝑏 ∈ On ∧ 𝑎 ∈ On) ∧ (𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅))) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) → ((𝑏 ∈ On ∧ 𝑎 ∈ On) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))
7271exp31 422 . . . . . . . . . . . . . 14 ((𝑏 ∈ On ∧ 𝑎 ∈ On) → ((𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → ((𝑏 ∈ On ∧ 𝑎 ∈ On) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))))
7372com4r 94 . . . . . . . . . . . . 13 ((𝑏 ∈ On ∧ 𝑎 ∈ On) → ((𝑏 ∈ On ∧ 𝑎 ∈ On) → ((𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))))
7442, 42, 73syl6c 70 . . . . . . . . . . . 12 (𝑥 ∈ On → ((𝑏𝑥𝑎𝑥) → ((𝑤 We 𝐴 ∧ ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))))
7574exp4a 434 . . . . . . . . . . 11 (𝑥 ∈ On → ((𝑏𝑥𝑎𝑥) → (𝑤 We 𝐴 → (({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠))))))
7675com3r 87 . . . . . . . . . 10 (𝑤 We 𝐴 → (𝑥 ∈ On → ((𝑏𝑥𝑎𝑥) → (({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠))))))
7776imp 409 . . . . . . . . 9 ((𝑤 We 𝐴𝑥 ∈ On) → ((𝑏𝑥𝑎𝑥) → (({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))))
7877a2d 29 . . . . . . . 8 ((𝑤 We 𝐴𝑥 ∈ On) → (((𝑏𝑥𝑎𝑥) → ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑏)𝑔𝑅𝑧} ≠ ∅ ∧ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑎)𝑔𝑅𝑧} ≠ ∅)) → ((𝑏𝑥𝑎𝑥) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))))
7938, 78syl5 34 . . . . . . 7 ((𝑤 We 𝐴𝑥 ∈ On) → (∀𝑦𝑥 𝐻 ≠ ∅ → ((𝑏𝑥𝑎𝑥) → (((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))))
8079imp4b 424 . . . . . 6 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (((𝑏𝑥𝑎𝑥) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))
8180exlimdvv 1931 . . . . 5 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (∃𝑏𝑎((𝑏𝑥𝑎𝑥) ∧ ((𝐹𝑏) = 𝑠 ∧ (𝐹𝑎) = 𝑟)) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))
8224, 81syl5 34 . . . 4 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → ((𝑠 ∈ (𝐹𝑥) ∧ 𝑟 ∈ (𝐹𝑥)) → (𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))
8382ralrimivv 3190 . . 3 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → ∀𝑠 ∈ (𝐹𝑥)∀𝑟 ∈ (𝐹𝑥)(𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠))
847, 83jca2 516 . 2 (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝑅 Po (𝐹𝑥) ∧ ∀𝑠 ∈ (𝐹𝑥)∀𝑟 ∈ (𝐹𝑥)(𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠))))
85 df-so 5474 . 2 (𝑅 Or (𝐹𝑥) ↔ (𝑅 Po (𝐹𝑥) ∧ ∀𝑠 ∈ (𝐹𝑥)∀𝑟 ∈ (𝐹𝑥)(𝑠𝑅𝑟𝑠 = 𝑟𝑟𝑅𝑠)))
8684, 85syl6ibr 254 1 (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → 𝑅 Or (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3o 1082   = wceq 1533  wex 1776  wcel 2110  wne 3016  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  wss 3935  c0 4290   class class class wbr 5065  cmpt 5145   Po wpo 5471   Or wor 5472   We wwe 5512  ran crn 5555  cima 5557  Ord word 6189  Oncon0 6190  Fun wfun 6348   Fn wfn 6349  cfv 6354  crio 7112  recscrecs 8006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-wrecs 7946  df-recs 8007
This theorem is referenced by:  zorn2lem7  9923
  Copyright terms: Public domain W3C validator