MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anim123d Structured version   Visualization version   GIF version

Theorem 3anim123d 1445
Description: Deduction joining 3 implications to form implication of conjunctions. (Contributed by NM, 24-Feb-2005.)
Hypotheses
Ref Expression
3anim123d.1 (𝜑 → (𝜓𝜒))
3anim123d.2 (𝜑 → (𝜃𝜏))
3anim123d.3 (𝜑 → (𝜂𝜁))
Assertion
Ref Expression
3anim123d (𝜑 → ((𝜓𝜃𝜂) → (𝜒𝜏𝜁)))

Proof of Theorem 3anim123d
StepHypRef Expression
1 3anim123d.1 . . . 4 (𝜑 → (𝜓𝜒))
2 3anim123d.2 . . . 4 (𝜑 → (𝜃𝜏))
31, 2anim12d 609 . . 3 (𝜑 → ((𝜓𝜃) → (𝜒𝜏)))
4 3anim123d.3 . . 3 (𝜑 → (𝜂𝜁))
53, 4anim12d 609 . 2 (𝜑 → (((𝜓𝜃) ∧ 𝜂) → ((𝜒𝜏) ∧ 𝜁)))
6 df-3an 1088 . 2 ((𝜓𝜃𝜂) ↔ ((𝜓𝜃) ∧ 𝜂))
7 df-3an 1088 . 2 ((𝜒𝜏𝜁) ↔ ((𝜒𝜏) ∧ 𝜁))
85, 6, 73imtr4g 296 1 (𝜑 → ((𝜓𝜃𝜂) → (𝜒𝜏𝜁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  pofun  5579  isopolem  7338  issmo2  8363  smores  8366  inawina  10704  gchina  10713  repswcshw  14830  coprmprod  16680  issubmnd  18739  issubg2  19124  issubrng2  20518  issubrg2  20552  rnglidlmsgrp  21207  rnglidlrng  21208  ocv2ss  21633  issubassa3  21826  sslm  23237  cmetcaulem  25240  axcontlem4  28946  axcontlem8  28950  redwlk  29652  clwwlknwwlksn  30019  numclwwlk1lem2foa  30335  dipsubdir  30829  constrconj  33779  subgrpth  35156  cgr3tr4  36070  idinside  36102  ftc1anclem7  37723  fzmul  37765  fdc1  37770  rngosubdi  37969  rngosubdir  37970  cdlemg33a  40725  grtrimap  47960  grimgrtri  47961  grlimgrtri  48008  upwlkwlk  48114
  Copyright terms: Public domain W3C validator