| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anim123d | Structured version Visualization version GIF version | ||
| Description: Deduction joining 3 implications to form implication of conjunctions. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3anim123d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3anim123d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 3anim123d.3 | ⊢ (𝜑 → (𝜂 → 𝜁)) |
| Ref | Expression |
|---|---|
| 3anim123d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) → (𝜒 ∧ 𝜏 ∧ 𝜁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anim123d.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 3anim123d.2 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 3 | 1, 2 | anim12d 609 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
| 4 | 3anim123d.3 | . . 3 ⊢ (𝜑 → (𝜂 → 𝜁)) | |
| 5 | 3, 4 | anim12d 609 | . 2 ⊢ (𝜑 → (((𝜓 ∧ 𝜃) ∧ 𝜂) → ((𝜒 ∧ 𝜏) ∧ 𝜁))) |
| 6 | df-3an 1088 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) | |
| 7 | df-3an 1088 | . 2 ⊢ ((𝜒 ∧ 𝜏 ∧ 𝜁) ↔ ((𝜒 ∧ 𝜏) ∧ 𝜁)) | |
| 8 | 5, 6, 7 | 3imtr4g 296 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) → (𝜒 ∧ 𝜏 ∧ 𝜁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: pofun 5542 isopolem 7279 issmo2 8269 smores 8272 inawina 10581 gchina 10590 repswcshw 14719 coprmprod 16572 issubmnd 18669 issubg2 19054 issubrng2 20474 issubrg2 20508 rnglidlmsgrp 21184 rnglidlrng 21185 ocv2ss 21611 issubassa3 21804 sslm 23215 cmetcaulem 25216 axcontlem4 28946 axcontlem8 28950 redwlk 29650 clwwlknwwlksn 30016 numclwwlk1lem2foa 30332 dipsubdir 30826 constrconj 33756 subgrpth 35176 cgr3tr4 36092 idinside 36124 ftc1anclem7 37745 fzmul 37787 fdc1 37792 rngosubdi 37991 rngosubdir 37992 cdlemg33a 40751 grtrimap 47985 grimgrtri 47986 grlimgrtri 48040 upwlkwlk 48176 |
| Copyright terms: Public domain | W3C validator |