Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anim123d | Structured version Visualization version GIF version |
Description: Deduction joining 3 implications to form implication of conjunctions. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
3anim123d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3anim123d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
3anim123d.3 | ⊢ (𝜑 → (𝜂 → 𝜁)) |
Ref | Expression |
---|---|
3anim123d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) → (𝜒 ∧ 𝜏 ∧ 𝜁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anim123d.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 3anim123d.2 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
3 | 1, 2 | anim12d 608 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
4 | 3anim123d.3 | . . 3 ⊢ (𝜑 → (𝜂 → 𝜁)) | |
5 | 3, 4 | anim12d 608 | . 2 ⊢ (𝜑 → (((𝜓 ∧ 𝜃) ∧ 𝜂) → ((𝜒 ∧ 𝜏) ∧ 𝜁))) |
6 | df-3an 1087 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) | |
7 | df-3an 1087 | . 2 ⊢ ((𝜒 ∧ 𝜏 ∧ 𝜁) ↔ ((𝜒 ∧ 𝜏) ∧ 𝜁)) | |
8 | 5, 6, 7 | 3imtr4g 295 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) → (𝜒 ∧ 𝜏 ∧ 𝜁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: pofun 5520 isopolem 7209 issmo2 8164 smores 8167 inawina 10430 gchina 10439 repswcshw 14506 coprmprod 16347 issubmnd 18393 issubg2 18751 issubrg2 20025 ocv2ss 20859 issubassa3 21053 sslm 22431 cmetcaulem 24433 axcontlem4 27316 axcontlem8 27320 redwlk 28020 clwwlknwwlksn 28381 numclwwlk1lem2foa 28697 dipsubdir 29189 subgrpth 33075 poxp3 33775 cgr3tr4 34333 idinside 34365 ftc1anclem7 35835 fzmul 35878 fdc1 35883 rngosubdi 36082 rngosubdir 36083 cdlemg33a 38699 upwlkwlk 45253 lidlmsgrp 45436 lidlrng 45437 |
Copyright terms: Public domain | W3C validator |