MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anim123d Structured version   Visualization version   GIF version

Theorem 3anim123d 1445
Description: Deduction joining 3 implications to form implication of conjunctions. (Contributed by NM, 24-Feb-2005.)
Hypotheses
Ref Expression
3anim123d.1 (𝜑 → (𝜓𝜒))
3anim123d.2 (𝜑 → (𝜃𝜏))
3anim123d.3 (𝜑 → (𝜂𝜁))
Assertion
Ref Expression
3anim123d (𝜑 → ((𝜓𝜃𝜂) → (𝜒𝜏𝜁)))

Proof of Theorem 3anim123d
StepHypRef Expression
1 3anim123d.1 . . . 4 (𝜑 → (𝜓𝜒))
2 3anim123d.2 . . . 4 (𝜑 → (𝜃𝜏))
31, 2anim12d 609 . . 3 (𝜑 → ((𝜓𝜃) → (𝜒𝜏)))
4 3anim123d.3 . . 3 (𝜑 → (𝜂𝜁))
53, 4anim12d 609 . 2 (𝜑 → (((𝜓𝜃) ∧ 𝜂) → ((𝜒𝜏) ∧ 𝜁)))
6 df-3an 1088 . 2 ((𝜓𝜃𝜂) ↔ ((𝜓𝜃) ∧ 𝜂))
7 df-3an 1088 . 2 ((𝜒𝜏𝜁) ↔ ((𝜒𝜏) ∧ 𝜁))
85, 6, 73imtr4g 296 1 (𝜑 → ((𝜓𝜃𝜂) → (𝜒𝜏𝜁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  pofun  5564  isopolem  7320  issmo2  8318  smores  8321  inawina  10643  gchina  10652  repswcshw  14777  coprmprod  16631  issubmnd  18688  issubg2  19073  issubrng2  20467  issubrg2  20501  rnglidlmsgrp  21156  rnglidlrng  21157  ocv2ss  21582  issubassa3  21775  sslm  23186  cmetcaulem  25188  axcontlem4  28894  axcontlem8  28898  redwlk  29600  clwwlknwwlksn  29967  numclwwlk1lem2foa  30283  dipsubdir  30777  constrconj  33735  subgrpth  35121  cgr3tr4  36040  idinside  36072  ftc1anclem7  37693  fzmul  37735  fdc1  37740  rngosubdi  37939  rngosubdir  37940  cdlemg33a  40700  grtrimap  47947  grimgrtri  47948  grlimgrtri  47995  upwlkwlk  48127
  Copyright terms: Public domain W3C validator