| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anim123d | Structured version Visualization version GIF version | ||
| Description: Deduction joining 3 implications to form implication of conjunctions. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3anim123d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3anim123d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 3anim123d.3 | ⊢ (𝜑 → (𝜂 → 𝜁)) |
| Ref | Expression |
|---|---|
| 3anim123d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) → (𝜒 ∧ 𝜏 ∧ 𝜁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anim123d.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 3anim123d.2 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 3 | 1, 2 | anim12d 609 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
| 4 | 3anim123d.3 | . . 3 ⊢ (𝜑 → (𝜂 → 𝜁)) | |
| 5 | 3, 4 | anim12d 609 | . 2 ⊢ (𝜑 → (((𝜓 ∧ 𝜃) ∧ 𝜂) → ((𝜒 ∧ 𝜏) ∧ 𝜁))) |
| 6 | df-3an 1088 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) | |
| 7 | df-3an 1088 | . 2 ⊢ ((𝜒 ∧ 𝜏 ∧ 𝜁) ↔ ((𝜒 ∧ 𝜏) ∧ 𝜁)) | |
| 8 | 5, 6, 7 | 3imtr4g 296 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) → (𝜒 ∧ 𝜏 ∧ 𝜁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: pofun 5579 isopolem 7338 issmo2 8363 smores 8366 inawina 10704 gchina 10713 repswcshw 14830 coprmprod 16680 issubmnd 18739 issubg2 19124 issubrng2 20518 issubrg2 20552 rnglidlmsgrp 21207 rnglidlrng 21208 ocv2ss 21633 issubassa3 21826 sslm 23237 cmetcaulem 25240 axcontlem4 28946 axcontlem8 28950 redwlk 29652 clwwlknwwlksn 30019 numclwwlk1lem2foa 30335 dipsubdir 30829 constrconj 33779 subgrpth 35156 cgr3tr4 36070 idinside 36102 ftc1anclem7 37723 fzmul 37765 fdc1 37770 rngosubdi 37969 rngosubdir 37970 cdlemg33a 40725 grtrimap 47960 grimgrtri 47961 grlimgrtri 48008 upwlkwlk 48114 |
| Copyright terms: Public domain | W3C validator |