Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anim123d | Structured version Visualization version GIF version |
Description: Deduction joining 3 implications to form implication of conjunctions. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
3anim123d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
3anim123d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
3anim123d.3 | ⊢ (𝜑 → (𝜂 → 𝜁)) |
Ref | Expression |
---|---|
3anim123d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) → (𝜒 ∧ 𝜏 ∧ 𝜁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anim123d.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 3anim123d.2 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
3 | 1, 2 | anim12d 610 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
4 | 3anim123d.3 | . . 3 ⊢ (𝜑 → (𝜂 → 𝜁)) | |
5 | 3, 4 | anim12d 610 | . 2 ⊢ (𝜑 → (((𝜓 ∧ 𝜃) ∧ 𝜂) → ((𝜒 ∧ 𝜏) ∧ 𝜁))) |
6 | df-3an 1089 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) | |
7 | df-3an 1089 | . 2 ⊢ ((𝜒 ∧ 𝜏 ∧ 𝜁) ↔ ((𝜒 ∧ 𝜏) ∧ 𝜁)) | |
8 | 5, 6, 7 | 3imtr4g 296 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) → (𝜒 ∧ 𝜏 ∧ 𝜁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 |
This theorem is referenced by: pofun 5532 isopolem 7248 issmo2 8211 smores 8214 inawina 10496 gchina 10505 repswcshw 14574 coprmprod 16415 issubmnd 18461 issubg2 18819 issubrg2 20093 ocv2ss 20927 issubassa3 21121 sslm 22499 cmetcaulem 24501 axcontlem4 27384 axcontlem8 27388 redwlk 28089 clwwlknwwlksn 28451 numclwwlk1lem2foa 28767 dipsubdir 29259 subgrpth 33145 poxp3 33845 cgr3tr4 34403 idinside 34435 ftc1anclem7 35904 fzmul 35947 fdc1 35952 rngosubdi 36151 rngosubdir 36152 cdlemg33a 38920 upwlkwlk 45545 lidlmsgrp 45728 lidlrng 45729 |
Copyright terms: Public domain | W3C validator |