MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anim123d Structured version   Visualization version   GIF version

Theorem 3anim123d 1445
Description: Deduction joining 3 implications to form implication of conjunctions. (Contributed by NM, 24-Feb-2005.)
Hypotheses
Ref Expression
3anim123d.1 (𝜑 → (𝜓𝜒))
3anim123d.2 (𝜑 → (𝜃𝜏))
3anim123d.3 (𝜑 → (𝜂𝜁))
Assertion
Ref Expression
3anim123d (𝜑 → ((𝜓𝜃𝜂) → (𝜒𝜏𝜁)))

Proof of Theorem 3anim123d
StepHypRef Expression
1 3anim123d.1 . . . 4 (𝜑 → (𝜓𝜒))
2 3anim123d.2 . . . 4 (𝜑 → (𝜃𝜏))
31, 2anim12d 609 . . 3 (𝜑 → ((𝜓𝜃) → (𝜒𝜏)))
4 3anim123d.3 . . 3 (𝜑 → (𝜂𝜁))
53, 4anim12d 609 . 2 (𝜑 → (((𝜓𝜃) ∧ 𝜂) → ((𝜒𝜏) ∧ 𝜁)))
6 df-3an 1088 . 2 ((𝜓𝜃𝜂) ↔ ((𝜓𝜃) ∧ 𝜂))
7 df-3an 1088 . 2 ((𝜒𝜏𝜁) ↔ ((𝜒𝜏) ∧ 𝜁))
85, 6, 73imtr4g 296 1 (𝜑 → ((𝜓𝜃𝜂) → (𝜒𝜏𝜁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  pofun  5542  isopolem  7279  issmo2  8269  smores  8272  inawina  10581  gchina  10590  repswcshw  14719  coprmprod  16572  issubmnd  18669  issubg2  19054  issubrng2  20474  issubrg2  20508  rnglidlmsgrp  21184  rnglidlrng  21185  ocv2ss  21611  issubassa3  21804  sslm  23215  cmetcaulem  25216  axcontlem4  28946  axcontlem8  28950  redwlk  29650  clwwlknwwlksn  30016  numclwwlk1lem2foa  30332  dipsubdir  30826  constrconj  33756  subgrpth  35176  cgr3tr4  36092  idinside  36124  ftc1anclem7  37745  fzmul  37787  fdc1  37792  rngosubdi  37991  rngosubdir  37992  cdlemg33a  40751  grtrimap  47985  grimgrtri  47986  grlimgrtri  48040  upwlkwlk  48176
  Copyright terms: Public domain W3C validator