MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anim123d Structured version   Visualization version   GIF version

Theorem 3anim123d 1445
Description: Deduction joining 3 implications to form implication of conjunctions. (Contributed by NM, 24-Feb-2005.)
Hypotheses
Ref Expression
3anim123d.1 (𝜑 → (𝜓𝜒))
3anim123d.2 (𝜑 → (𝜃𝜏))
3anim123d.3 (𝜑 → (𝜂𝜁))
Assertion
Ref Expression
3anim123d (𝜑 → ((𝜓𝜃𝜂) → (𝜒𝜏𝜁)))

Proof of Theorem 3anim123d
StepHypRef Expression
1 3anim123d.1 . . . 4 (𝜑 → (𝜓𝜒))
2 3anim123d.2 . . . 4 (𝜑 → (𝜃𝜏))
31, 2anim12d 609 . . 3 (𝜑 → ((𝜓𝜃) → (𝜒𝜏)))
4 3anim123d.3 . . 3 (𝜑 → (𝜂𝜁))
53, 4anim12d 609 . 2 (𝜑 → (((𝜓𝜃) ∧ 𝜂) → ((𝜒𝜏) ∧ 𝜁)))
6 df-3an 1088 . 2 ((𝜓𝜃𝜂) ↔ ((𝜓𝜃) ∧ 𝜂))
7 df-3an 1088 . 2 ((𝜒𝜏𝜁) ↔ ((𝜒𝜏) ∧ 𝜁))
85, 6, 73imtr4g 296 1 (𝜑 → ((𝜓𝜃𝜂) → (𝜒𝜏𝜁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  pofun  5547  isopolem  7287  issmo2  8277  smores  8280  inawina  10590  gchina  10599  repswcshw  14723  coprmprod  16576  issubmnd  18673  issubg2  19058  issubrng2  20477  issubrg2  20511  rnglidlmsgrp  21187  rnglidlrng  21188  ocv2ss  21614  issubassa3  21807  sslm  23217  cmetcaulem  25218  axcontlem4  28949  axcontlem8  28953  redwlk  29653  clwwlknwwlksn  30022  numclwwlk1lem2foa  30338  dipsubdir  30832  constrconj  33781  subgrpth  35201  cgr3tr4  36119  idinside  36151  ftc1anclem7  37762  fzmul  37804  fdc1  37809  rngosubdi  38008  rngosubdir  38009  cdlemg33a  40828  grtrimap  48075  grimgrtri  48076  grlimgrtri  48130  upwlkwlk  48266
  Copyright terms: Public domain W3C validator