| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anim123d | Structured version Visualization version GIF version | ||
| Description: Deduction joining 3 implications to form implication of conjunctions. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| 3anim123d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3anim123d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| 3anim123d.3 | ⊢ (𝜑 → (𝜂 → 𝜁)) |
| Ref | Expression |
|---|---|
| 3anim123d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) → (𝜒 ∧ 𝜏 ∧ 𝜁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anim123d.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 3anim123d.2 | . . . 4 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 3 | 1, 2 | anim12d 609 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
| 4 | 3anim123d.3 | . . 3 ⊢ (𝜑 → (𝜂 → 𝜁)) | |
| 5 | 3, 4 | anim12d 609 | . 2 ⊢ (𝜑 → (((𝜓 ∧ 𝜃) ∧ 𝜂) → ((𝜒 ∧ 𝜏) ∧ 𝜁))) |
| 6 | df-3an 1088 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) ↔ ((𝜓 ∧ 𝜃) ∧ 𝜂)) | |
| 7 | df-3an 1088 | . 2 ⊢ ((𝜒 ∧ 𝜏 ∧ 𝜁) ↔ ((𝜒 ∧ 𝜏) ∧ 𝜁)) | |
| 8 | 5, 6, 7 | 3imtr4g 296 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃 ∧ 𝜂) → (𝜒 ∧ 𝜏 ∧ 𝜁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: pofun 5564 isopolem 7320 issmo2 8318 smores 8321 inawina 10643 gchina 10652 repswcshw 14777 coprmprod 16631 issubmnd 18688 issubg2 19073 issubrng2 20467 issubrg2 20501 rnglidlmsgrp 21156 rnglidlrng 21157 ocv2ss 21582 issubassa3 21775 sslm 23186 cmetcaulem 25188 axcontlem4 28894 axcontlem8 28898 redwlk 29600 clwwlknwwlksn 29967 numclwwlk1lem2foa 30283 dipsubdir 30777 constrconj 33735 subgrpth 35121 cgr3tr4 36040 idinside 36072 ftc1anclem7 37693 fzmul 37735 fdc1 37740 rngosubdi 37939 rngosubdir 37940 cdlemg33a 40700 grtrimap 47947 grimgrtri 47948 grlimgrtri 47995 upwlkwlk 48127 |
| Copyright terms: Public domain | W3C validator |