MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anim123d Structured version   Visualization version   GIF version

Theorem 3anim123d 1443
Description: Deduction joining 3 implications to form implication of conjunctions. (Contributed by NM, 24-Feb-2005.)
Hypotheses
Ref Expression
3anim123d.1 (𝜑 → (𝜓𝜒))
3anim123d.2 (𝜑 → (𝜃𝜏))
3anim123d.3 (𝜑 → (𝜂𝜁))
Assertion
Ref Expression
3anim123d (𝜑 → ((𝜓𝜃𝜂) → (𝜒𝜏𝜁)))

Proof of Theorem 3anim123d
StepHypRef Expression
1 3anim123d.1 . . . 4 (𝜑 → (𝜓𝜒))
2 3anim123d.2 . . . 4 (𝜑 → (𝜃𝜏))
31, 2anim12d 608 . . 3 (𝜑 → ((𝜓𝜃) → (𝜒𝜏)))
4 3anim123d.3 . . 3 (𝜑 → (𝜂𝜁))
53, 4anim12d 608 . 2 (𝜑 → (((𝜓𝜃) ∧ 𝜂) → ((𝜒𝜏) ∧ 𝜁)))
6 df-3an 1089 . 2 ((𝜓𝜃𝜂) ↔ ((𝜓𝜃) ∧ 𝜂))
7 df-3an 1089 . 2 ((𝜒𝜏𝜁) ↔ ((𝜒𝜏) ∧ 𝜁))
85, 6, 73imtr4g 296 1 (𝜑 → ((𝜓𝜃𝜂) → (𝜒𝜏𝜁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  pofun  5626  isopolem  7381  issmo2  8405  smores  8408  inawina  10759  gchina  10768  repswcshw  14860  coprmprod  16708  issubmnd  18799  issubg2  19181  issubrng2  20584  issubrg2  20620  rnglidlmsgrp  21279  rnglidlrng  21280  ocv2ss  21714  issubassa3  21909  sslm  23328  cmetcaulem  25341  axcontlem4  29000  axcontlem8  29004  redwlk  29708  clwwlknwwlksn  30070  numclwwlk1lem2foa  30386  dipsubdir  30880  constrconj  33735  subgrpth  35102  cgr3tr4  36016  idinside  36048  ftc1anclem7  37659  fzmul  37701  fdc1  37706  rngosubdi  37905  rngosubdir  37906  cdlemg33a  40663  grtrimap  47797  grimgrtri  47798  grlimgrtri  47820  upwlkwlk  47862
  Copyright terms: Public domain W3C validator