MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anim123d Structured version   Visualization version   GIF version

Theorem 3anim123d 1445
Description: Deduction joining 3 implications to form implication of conjunctions. (Contributed by NM, 24-Feb-2005.)
Hypotheses
Ref Expression
3anim123d.1 (𝜑 → (𝜓𝜒))
3anim123d.2 (𝜑 → (𝜃𝜏))
3anim123d.3 (𝜑 → (𝜂𝜁))
Assertion
Ref Expression
3anim123d (𝜑 → ((𝜓𝜃𝜂) → (𝜒𝜏𝜁)))

Proof of Theorem 3anim123d
StepHypRef Expression
1 3anim123d.1 . . . 4 (𝜑 → (𝜓𝜒))
2 3anim123d.2 . . . 4 (𝜑 → (𝜃𝜏))
31, 2anim12d 609 . . 3 (𝜑 → ((𝜓𝜃) → (𝜒𝜏)))
4 3anim123d.3 . . 3 (𝜑 → (𝜂𝜁))
53, 4anim12d 609 . 2 (𝜑 → (((𝜓𝜃) ∧ 𝜂) → ((𝜒𝜏) ∧ 𝜁)))
6 df-3an 1088 . 2 ((𝜓𝜃𝜂) ↔ ((𝜓𝜃) ∧ 𝜂))
7 df-3an 1088 . 2 ((𝜒𝜏𝜁) ↔ ((𝜒𝜏) ∧ 𝜁))
85, 6, 73imtr4g 296 1 (𝜑 → ((𝜓𝜃𝜂) → (𝜒𝜏𝜁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  pofun  5549  isopolem  7286  issmo2  8279  smores  8282  inawina  10603  gchina  10612  repswcshw  14736  coprmprod  16590  issubmnd  18653  issubg2  19038  issubrng2  20461  issubrg2  20495  rnglidlmsgrp  21171  rnglidlrng  21172  ocv2ss  21598  issubassa3  21791  sslm  23202  cmetcaulem  25204  axcontlem4  28930  axcontlem8  28934  redwlk  29634  clwwlknwwlksn  30000  numclwwlk1lem2foa  30316  dipsubdir  30810  constrconj  33714  subgrpth  35109  cgr3tr4  36028  idinside  36060  ftc1anclem7  37681  fzmul  37723  fdc1  37728  rngosubdi  37927  rngosubdir  37928  cdlemg33a  40688  grtrimap  47936  grimgrtri  47937  grlimgrtri  47991  upwlkwlk  48127
  Copyright terms: Public domain W3C validator