MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abeq2f Structured version   Visualization version   GIF version

Theorem abeq2f 2940
Description: Equality of a class variable and a class abstraction. In this version, the fact that 𝑥 is a nonfree variable in 𝐴 is explicitly stated as a hypothesis. (Contributed by Thierry Arnoux, 11-May-2017.) Avoid ax-13 2372. (Revised by Wolf Lammen, 13-May-2023.)
Hypothesis
Ref Expression
abeq2f.0 𝑥𝐴
Assertion
Ref Expression
abeq2f (𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))

Proof of Theorem abeq2f
StepHypRef Expression
1 abeq2f.0 . . 3 𝑥𝐴
2 nfab1 2909 . . 3 𝑥{𝑥𝜑}
31, 2cleqf 2938 . 2 (𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝑥 ∈ {𝑥𝜑}))
4 abid 2719 . . . 4 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
54bibi2i 338 . . 3 ((𝑥𝐴𝑥 ∈ {𝑥𝜑}) ↔ (𝑥𝐴𝜑))
65albii 1822 . 2 (∀𝑥(𝑥𝐴𝑥 ∈ {𝑥𝜑}) ↔ ∀𝑥(𝑥𝐴𝜑))
73, 6bitri 274 1 (𝐴 = {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1537   = wceq 1539  wcel 2106  {cab 2715  wnfc 2887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889
This theorem is referenced by:  rabid2f  3313  mptfnf  6568
  Copyright terms: Public domain W3C validator