![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abeq2f | Structured version Visualization version GIF version |
Description: Equality of a class variable and a class abstraction. In this version, the fact that 𝑥 is a non-free variable in 𝐴 is explicitly stated as a hypothesis. (Contributed by Thierry Arnoux, 11-May-2017.) Avoid ax-13 2301. (Revised by Wolf Lammen, 13-May-2023.) |
Ref | Expression |
---|---|
abeq2f.0 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
abeq2f | ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeq2f.0 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | nfab1 2928 | . . 3 ⊢ Ⅎ𝑥{𝑥 ∣ 𝜑} | |
3 | 1, 2 | cleqf 2955 | . 2 ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑})) |
4 | abid 2756 | . . . 4 ⊢ (𝑥 ∈ {𝑥 ∣ 𝜑} ↔ 𝜑) | |
5 | 4 | bibi2i 330 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑}) ↔ (𝑥 ∈ 𝐴 ↔ 𝜑)) |
6 | 5 | albii 1782 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ {𝑥 ∣ 𝜑}) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) |
7 | 3, 6 | bitri 267 | 1 ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∀wal 1505 = wceq 1507 ∈ wcel 2050 {cab 2752 Ⅎwnfc 2910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2744 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 |
This theorem is referenced by: rabid2f 3315 mptfnf 6307 |
Copyright terms: Public domain | W3C validator |