Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abssf Structured version   Visualization version   GIF version

Theorem abssf 43034
Description: Class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
abssf.1 𝑥𝐴
Assertion
Ref Expression
abssf ({𝑥𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝜑𝑥𝐴))

Proof of Theorem abssf
StepHypRef Expression
1 abssf.1 . . . 4 𝑥𝐴
21abid2f 2937 . . 3 {𝑥𝑥𝐴} = 𝐴
32sseq2i 3968 . 2 ({𝑥𝜑} ⊆ {𝑥𝑥𝐴} ↔ {𝑥𝜑} ⊆ 𝐴)
4 ss2ab 4011 . 2 ({𝑥𝜑} ⊆ {𝑥𝑥𝐴} ↔ ∀𝑥(𝜑𝑥𝐴))
53, 4bitr3i 277 1 ({𝑥𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝜑𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1539  wcel 2106  {cab 2714  wnfc 2885  wss 3905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-v 3445  df-in 3912  df-ss 3922
This theorem is referenced by:  rabssf  43041
  Copyright terms: Public domain W3C validator