Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  abssf Structured version   Visualization version   GIF version

Theorem abssf 45103
Description: Class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
abssf.1 𝑥𝐴
Assertion
Ref Expression
abssf ({𝑥𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝜑𝑥𝐴))

Proof of Theorem abssf
StepHypRef Expression
1 abssf.1 . . . 4 𝑥𝐴
21abid2f 2930 . . 3 {𝑥𝑥𝐴} = 𝐴
32sseq2i 3993 . 2 ({𝑥𝜑} ⊆ {𝑥𝑥𝐴} ↔ {𝑥𝜑} ⊆ 𝐴)
4 ss2ab 4042 . 2 ({𝑥𝜑} ⊆ {𝑥𝑥𝐴} ↔ ∀𝑥(𝜑𝑥𝐴))
53, 4bitr3i 277 1 ({𝑥𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝜑𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wcel 2109  {cab 2714  wnfc 2884  wss 3931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ss 3948
This theorem is referenced by:  rabssf  45110
  Copyright terms: Public domain W3C validator