| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mptctf | Structured version Visualization version GIF version | ||
| Description: A countable mapping set is countable, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
| Ref | Expression |
|---|---|
| mptctf.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| mptctf | ⊢ (𝐴 ≼ ω → (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funmpt 6562 | . 2 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | ctex 8941 | . . . 4 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
| 3 | eqid 2730 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | dmmpt 6221 | . . . . 5 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
| 5 | df-rab 3412 | . . . . . 6 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V)} | |
| 6 | simpl 482 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V) → 𝑥 ∈ 𝐴) | |
| 7 | 6 | ss2abi 4038 | . . . . . . 7 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V)} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴} |
| 8 | mptctf.1 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
| 9 | 8 | abid2f 2924 | . . . . . . 7 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
| 10 | 7, 9 | sseqtri 4003 | . . . . . 6 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V)} ⊆ 𝐴 |
| 11 | 5, 10 | eqsstri 4001 | . . . . 5 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ⊆ 𝐴 |
| 12 | 4, 11 | eqsstri 4001 | . . . 4 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴 |
| 13 | ssdomg 8977 | . . . 4 ⊢ (𝐴 ∈ V → (dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ 𝐴)) | |
| 14 | 2, 12, 13 | mpisyl 21 | . . 3 ⊢ (𝐴 ≼ ω → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ 𝐴) |
| 15 | domtr 8984 | . . 3 ⊢ ((dom (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ 𝐴 ∧ 𝐴 ≼ ω) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) | |
| 16 | 14, 15 | mpancom 688 | . 2 ⊢ (𝐴 ≼ ω → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) |
| 17 | funfn 6554 | . . 3 ⊢ (Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn dom (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
| 18 | fnct 10508 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵) Fn dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) → (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) | |
| 19 | 17, 18 | sylanb 581 | . 2 ⊢ ((Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) → (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) |
| 20 | 1, 16, 19 | sylancr 587 | 1 ⊢ (𝐴 ≼ ω → (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 {cab 2708 Ⅎwnfc 2878 {crab 3411 Vcvv 3455 ⊆ wss 3922 class class class wbr 5115 ↦ cmpt 5196 dom cdm 5646 Fun wfun 6513 Fn wfn 6514 ωcom 7850 ≼ cdom 8920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-inf2 9612 ax-ac2 10434 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-er 8682 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-oi 9481 df-card 9910 df-acn 9913 df-ac 10087 |
| This theorem is referenced by: abrexctf 32650 |
| Copyright terms: Public domain | W3C validator |