Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mptctf Structured version   Visualization version   GIF version

Theorem mptctf 32749
Description: A countable mapping set is countable, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Thierry Arnoux, 8-Mar-2017.)
Hypothesis
Ref Expression
mptctf.1 𝑥𝐴
Assertion
Ref Expression
mptctf (𝐴 ≼ ω → (𝑥𝐴𝐵) ≼ ω)

Proof of Theorem mptctf
StepHypRef Expression
1 funmpt 6612 . 2 Fun (𝑥𝐴𝐵)
2 ctex 9012 . . . 4 (𝐴 ≼ ω → 𝐴 ∈ V)
3 eqid 2737 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43dmmpt 6268 . . . . 5 dom (𝑥𝐴𝐵) = {𝑥𝐴𝐵 ∈ V}
5 df-rab 3437 . . . . . 6 {𝑥𝐴𝐵 ∈ V} = {𝑥 ∣ (𝑥𝐴𝐵 ∈ V)}
6 simpl 482 . . . . . . . 8 ((𝑥𝐴𝐵 ∈ V) → 𝑥𝐴)
76ss2abi 4080 . . . . . . 7 {𝑥 ∣ (𝑥𝐴𝐵 ∈ V)} ⊆ {𝑥𝑥𝐴}
8 mptctf.1 . . . . . . . 8 𝑥𝐴
98abid2f 2936 . . . . . . 7 {𝑥𝑥𝐴} = 𝐴
107, 9sseqtri 4035 . . . . . 6 {𝑥 ∣ (𝑥𝐴𝐵 ∈ V)} ⊆ 𝐴
115, 10eqsstri 4033 . . . . 5 {𝑥𝐴𝐵 ∈ V} ⊆ 𝐴
124, 11eqsstri 4033 . . . 4 dom (𝑥𝐴𝐵) ⊆ 𝐴
13 ssdomg 9048 . . . 4 (𝐴 ∈ V → (dom (𝑥𝐴𝐵) ⊆ 𝐴 → dom (𝑥𝐴𝐵) ≼ 𝐴))
142, 12, 13mpisyl 21 . . 3 (𝐴 ≼ ω → dom (𝑥𝐴𝐵) ≼ 𝐴)
15 domtr 9055 . . 3 ((dom (𝑥𝐴𝐵) ≼ 𝐴𝐴 ≼ ω) → dom (𝑥𝐴𝐵) ≼ ω)
1614, 15mpancom 688 . 2 (𝐴 ≼ ω → dom (𝑥𝐴𝐵) ≼ ω)
17 funfn 6604 . . 3 (Fun (𝑥𝐴𝐵) ↔ (𝑥𝐴𝐵) Fn dom (𝑥𝐴𝐵))
18 fnct 10584 . . 3 (((𝑥𝐴𝐵) Fn dom (𝑥𝐴𝐵) ∧ dom (𝑥𝐴𝐵) ≼ ω) → (𝑥𝐴𝐵) ≼ ω)
1917, 18sylanb 581 . 2 ((Fun (𝑥𝐴𝐵) ∧ dom (𝑥𝐴𝐵) ≼ ω) → (𝑥𝐴𝐵) ≼ ω)
201, 16, 19sylancr 587 1 (𝐴 ≼ ω → (𝑥𝐴𝐵) ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  {cab 2714  wnfc 2890  {crab 3436  Vcvv 3481  wss 3966   class class class wbr 5151  cmpt 5234  dom cdm 5693  Fun wfun 6563   Fn wfn 6564  ωcom 7894  cdom 8991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-inf2 9688  ax-ac2 10510
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-se 5646  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-isom 6578  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-er 8753  df-map 8876  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-oi 9557  df-card 9986  df-acn 9989  df-ac 10163
This theorem is referenced by:  abrexctf  32750
  Copyright terms: Public domain W3C validator