Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mptctf | Structured version Visualization version GIF version |
Description: A countable mapping set is countable, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
Ref | Expression |
---|---|
mptctf.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
mptctf | ⊢ (𝐴 ≼ ω → (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmpt 6456 | . 2 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | ctex 8708 | . . . 4 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
3 | eqid 2738 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | dmmpt 6132 | . . . . 5 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
5 | df-rab 3072 | . . . . . 6 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V)} | |
6 | simpl 482 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V) → 𝑥 ∈ 𝐴) | |
7 | 6 | ss2abi 3996 | . . . . . . 7 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V)} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴} |
8 | mptctf.1 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
9 | 8 | abid2f 2938 | . . . . . . 7 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
10 | 7, 9 | sseqtri 3953 | . . . . . 6 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V)} ⊆ 𝐴 |
11 | 5, 10 | eqsstri 3951 | . . . . 5 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ⊆ 𝐴 |
12 | 4, 11 | eqsstri 3951 | . . . 4 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴 |
13 | ssdomg 8741 | . . . 4 ⊢ (𝐴 ∈ V → (dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ 𝐴)) | |
14 | 2, 12, 13 | mpisyl 21 | . . 3 ⊢ (𝐴 ≼ ω → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ 𝐴) |
15 | domtr 8748 | . . 3 ⊢ ((dom (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ 𝐴 ∧ 𝐴 ≼ ω) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) | |
16 | 14, 15 | mpancom 684 | . 2 ⊢ (𝐴 ≼ ω → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) |
17 | funfn 6448 | . . 3 ⊢ (Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn dom (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
18 | fnct 10224 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵) Fn dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) → (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) | |
19 | 17, 18 | sylanb 580 | . 2 ⊢ ((Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) → (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) |
20 | 1, 16, 19 | sylancr 586 | 1 ⊢ (𝐴 ≼ ω → (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 {cab 2715 Ⅎwnfc 2886 {crab 3067 Vcvv 3422 ⊆ wss 3883 class class class wbr 5070 ↦ cmpt 5153 dom cdm 5580 Fun wfun 6412 Fn wfn 6413 ωcom 7687 ≼ cdom 8689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-ac2 10150 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-oi 9199 df-card 9628 df-acn 9631 df-ac 9803 |
This theorem is referenced by: abrexctf 30955 |
Copyright terms: Public domain | W3C validator |