Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mptctf Structured version   Visualization version   GIF version

Theorem mptctf 32414
Description: A countable mapping set is countable, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Thierry Arnoux, 8-Mar-2017.)
Hypothesis
Ref Expression
mptctf.1 𝑥𝐴
Assertion
Ref Expression
mptctf (𝐴 ≼ ω → (𝑥𝐴𝐵) ≼ ω)

Proof of Theorem mptctf
StepHypRef Expression
1 funmpt 6577 . 2 Fun (𝑥𝐴𝐵)
2 ctex 8956 . . . 4 (𝐴 ≼ ω → 𝐴 ∈ V)
3 eqid 2724 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43dmmpt 6230 . . . . 5 dom (𝑥𝐴𝐵) = {𝑥𝐴𝐵 ∈ V}
5 df-rab 3425 . . . . . 6 {𝑥𝐴𝐵 ∈ V} = {𝑥 ∣ (𝑥𝐴𝐵 ∈ V)}
6 simpl 482 . . . . . . . 8 ((𝑥𝐴𝐵 ∈ V) → 𝑥𝐴)
76ss2abi 4056 . . . . . . 7 {𝑥 ∣ (𝑥𝐴𝐵 ∈ V)} ⊆ {𝑥𝑥𝐴}
8 mptctf.1 . . . . . . . 8 𝑥𝐴
98abid2f 2928 . . . . . . 7 {𝑥𝑥𝐴} = 𝐴
107, 9sseqtri 4011 . . . . . 6 {𝑥 ∣ (𝑥𝐴𝐵 ∈ V)} ⊆ 𝐴
115, 10eqsstri 4009 . . . . 5 {𝑥𝐴𝐵 ∈ V} ⊆ 𝐴
124, 11eqsstri 4009 . . . 4 dom (𝑥𝐴𝐵) ⊆ 𝐴
13 ssdomg 8993 . . . 4 (𝐴 ∈ V → (dom (𝑥𝐴𝐵) ⊆ 𝐴 → dom (𝑥𝐴𝐵) ≼ 𝐴))
142, 12, 13mpisyl 21 . . 3 (𝐴 ≼ ω → dom (𝑥𝐴𝐵) ≼ 𝐴)
15 domtr 9000 . . 3 ((dom (𝑥𝐴𝐵) ≼ 𝐴𝐴 ≼ ω) → dom (𝑥𝐴𝐵) ≼ ω)
1614, 15mpancom 685 . 2 (𝐴 ≼ ω → dom (𝑥𝐴𝐵) ≼ ω)
17 funfn 6569 . . 3 (Fun (𝑥𝐴𝐵) ↔ (𝑥𝐴𝐵) Fn dom (𝑥𝐴𝐵))
18 fnct 10529 . . 3 (((𝑥𝐴𝐵) Fn dom (𝑥𝐴𝐵) ∧ dom (𝑥𝐴𝐵) ≼ ω) → (𝑥𝐴𝐵) ≼ ω)
1917, 18sylanb 580 . 2 ((Fun (𝑥𝐴𝐵) ∧ dom (𝑥𝐴𝐵) ≼ ω) → (𝑥𝐴𝐵) ≼ ω)
201, 16, 19sylancr 586 1 (𝐴 ≼ ω → (𝑥𝐴𝐵) ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2098  {cab 2701  wnfc 2875  {crab 3424  Vcvv 3466  wss 3941   class class class wbr 5139  cmpt 5222  dom cdm 5667  Fun wfun 6528   Fn wfn 6529  ωcom 7849  cdom 8934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-inf2 9633  ax-ac2 10455
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-oi 9502  df-card 9931  df-acn 9934  df-ac 10108
This theorem is referenced by:  abrexctf  32415
  Copyright terms: Public domain W3C validator