![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mptctf | Structured version Visualization version GIF version |
Description: A countable mapping set is countable, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Thierry Arnoux, 8-Mar-2017.) |
Ref | Expression |
---|---|
mptctf.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
mptctf | ⊢ (𝐴 ≼ ω → (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmpt 6615 | . 2 ⊢ Fun (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | ctex 9019 | . . . 4 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) | |
3 | eqid 2734 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | dmmpt 6270 | . . . . 5 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} |
5 | df-rab 3439 | . . . . . 6 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V)} | |
6 | simpl 482 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V) → 𝑥 ∈ 𝐴) | |
7 | 6 | ss2abi 4084 | . . . . . . 7 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V)} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴} |
8 | mptctf.1 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
9 | 8 | abid2f 2938 | . . . . . . 7 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
10 | 7, 9 | sseqtri 4039 | . . . . . 6 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V)} ⊆ 𝐴 |
11 | 5, 10 | eqsstri 4037 | . . . . 5 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ V} ⊆ 𝐴 |
12 | 4, 11 | eqsstri 4037 | . . . 4 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴 |
13 | ssdomg 9056 | . . . 4 ⊢ (𝐴 ∈ V → (dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ 𝐴 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ 𝐴)) | |
14 | 2, 12, 13 | mpisyl 21 | . . 3 ⊢ (𝐴 ≼ ω → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ 𝐴) |
15 | domtr 9063 | . . 3 ⊢ ((dom (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ 𝐴 ∧ 𝐴 ≼ ω) → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) | |
16 | 14, 15 | mpancom 687 | . 2 ⊢ (𝐴 ≼ ω → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) |
17 | funfn 6607 | . . 3 ⊢ (Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn dom (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
18 | fnct 10602 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵) Fn dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) → (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) | |
19 | 17, 18 | sylanb 580 | . 2 ⊢ ((Fun (𝑥 ∈ 𝐴 ↦ 𝐵) ∧ dom (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) → (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) |
20 | 1, 16, 19 | sylancr 586 | 1 ⊢ (𝐴 ≼ ω → (𝑥 ∈ 𝐴 ↦ 𝐵) ≼ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2103 {cab 2711 Ⅎwnfc 2888 {crab 3438 Vcvv 3482 ⊆ wss 3970 class class class wbr 5169 ↦ cmpt 5252 dom cdm 5699 Fun wfun 6566 Fn wfn 6567 ωcom 7899 ≼ cdom 8997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5306 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-inf2 9706 ax-ac2 10528 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-ral 3064 df-rex 3073 df-rmo 3383 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4973 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-tr 5287 df-id 5597 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-se 5655 df-we 5656 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-pred 6331 df-ord 6397 df-on 6398 df-lim 6399 df-suc 6400 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-isom 6581 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-om 7900 df-1st 8026 df-2nd 8027 df-frecs 8318 df-wrecs 8349 df-recs 8423 df-rdg 8462 df-1o 8518 df-er 8759 df-map 8882 df-en 9000 df-dom 9001 df-sdom 9002 df-fin 9003 df-oi 9575 df-card 10004 df-acn 10007 df-ac 10181 |
This theorem is referenced by: abrexctf 32724 |
Copyright terms: Public domain | W3C validator |