Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mptctf Structured version   Visualization version   GIF version

Theorem mptctf 32494
Description: A countable mapping set is countable, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Thierry Arnoux, 8-Mar-2017.)
Hypothesis
Ref Expression
mptctf.1 𝑥𝐴
Assertion
Ref Expression
mptctf (𝐴 ≼ ω → (𝑥𝐴𝐵) ≼ ω)

Proof of Theorem mptctf
StepHypRef Expression
1 funmpt 6586 . 2 Fun (𝑥𝐴𝐵)
2 ctex 8978 . . . 4 (𝐴 ≼ ω → 𝐴 ∈ V)
3 eqid 2728 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43dmmpt 6239 . . . . 5 dom (𝑥𝐴𝐵) = {𝑥𝐴𝐵 ∈ V}
5 df-rab 3429 . . . . . 6 {𝑥𝐴𝐵 ∈ V} = {𝑥 ∣ (𝑥𝐴𝐵 ∈ V)}
6 simpl 482 . . . . . . . 8 ((𝑥𝐴𝐵 ∈ V) → 𝑥𝐴)
76ss2abi 4060 . . . . . . 7 {𝑥 ∣ (𝑥𝐴𝐵 ∈ V)} ⊆ {𝑥𝑥𝐴}
8 mptctf.1 . . . . . . . 8 𝑥𝐴
98abid2f 2932 . . . . . . 7 {𝑥𝑥𝐴} = 𝐴
107, 9sseqtri 4015 . . . . . 6 {𝑥 ∣ (𝑥𝐴𝐵 ∈ V)} ⊆ 𝐴
115, 10eqsstri 4013 . . . . 5 {𝑥𝐴𝐵 ∈ V} ⊆ 𝐴
124, 11eqsstri 4013 . . . 4 dom (𝑥𝐴𝐵) ⊆ 𝐴
13 ssdomg 9015 . . . 4 (𝐴 ∈ V → (dom (𝑥𝐴𝐵) ⊆ 𝐴 → dom (𝑥𝐴𝐵) ≼ 𝐴))
142, 12, 13mpisyl 21 . . 3 (𝐴 ≼ ω → dom (𝑥𝐴𝐵) ≼ 𝐴)
15 domtr 9022 . . 3 ((dom (𝑥𝐴𝐵) ≼ 𝐴𝐴 ≼ ω) → dom (𝑥𝐴𝐵) ≼ ω)
1614, 15mpancom 687 . 2 (𝐴 ≼ ω → dom (𝑥𝐴𝐵) ≼ ω)
17 funfn 6578 . . 3 (Fun (𝑥𝐴𝐵) ↔ (𝑥𝐴𝐵) Fn dom (𝑥𝐴𝐵))
18 fnct 10555 . . 3 (((𝑥𝐴𝐵) Fn dom (𝑥𝐴𝐵) ∧ dom (𝑥𝐴𝐵) ≼ ω) → (𝑥𝐴𝐵) ≼ ω)
1917, 18sylanb 580 . 2 ((Fun (𝑥𝐴𝐵) ∧ dom (𝑥𝐴𝐵) ≼ ω) → (𝑥𝐴𝐵) ≼ ω)
201, 16, 19sylancr 586 1 (𝐴 ≼ ω → (𝑥𝐴𝐵) ≼ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2099  {cab 2705  wnfc 2879  {crab 3428  Vcvv 3470  wss 3945   class class class wbr 5143  cmpt 5226  dom cdm 5673  Fun wfun 6537   Fn wfn 6538  ωcom 7865  cdom 8956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-inf2 9659  ax-ac2 10481
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7866  df-1st 7988  df-2nd 7989  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-1o 8481  df-er 8719  df-map 8841  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962  df-oi 9528  df-card 9957  df-acn 9960  df-ac 10134
This theorem is referenced by:  abrexctf  32495
  Copyright terms: Public domain W3C validator