Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabexgf | Structured version Visualization version GIF version |
Description: A version of rabexg 5250 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
rabexgf.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
rabexgf | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3072 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
2 | simpl 482 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 ∈ 𝐴) | |
3 | 2 | ss2abi 3996 | . . . 4 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ {𝑥 ∣ 𝑥 ∈ 𝐴} |
4 | rabexgf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
5 | 4 | abid2f 2938 | . . . 4 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 |
6 | 3, 5 | sseqtri 3953 | . . 3 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 |
7 | 1, 6 | eqsstri 3951 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 |
8 | ssexg 5242 | . 2 ⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ 𝐴 ∈ 𝑉) → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | |
9 | 7, 8 | mpan 686 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 {cab 2715 Ⅎwnfc 2886 {crab 3067 Vcvv 3422 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: rabexf 42572 stoweidlem27 43458 stoweidlem35 43466 |
Copyright terms: Public domain | W3C validator |