Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabexgf Structured version   Visualization version   GIF version

Theorem rabexgf 44924
Description: A version of rabexg 5355 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypothesis
Ref Expression
rabexgf.1 𝑥𝐴
Assertion
Ref Expression
rabexgf (𝐴𝑉 → {𝑥𝐴𝜑} ∈ V)

Proof of Theorem rabexgf
StepHypRef Expression
1 df-rab 3444 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 simpl 482 . . . . 5 ((𝑥𝐴𝜑) → 𝑥𝐴)
32ss2abi 4090 . . . 4 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥𝑥𝐴}
4 rabexgf.1 . . . . 5 𝑥𝐴
54abid2f 2942 . . . 4 {𝑥𝑥𝐴} = 𝐴
63, 5sseqtri 4045 . . 3 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
71, 6eqsstri 4043 . 2 {𝑥𝐴𝜑} ⊆ 𝐴
8 ssexg 5341 . 2 (({𝑥𝐴𝜑} ⊆ 𝐴𝐴𝑉) → {𝑥𝐴𝜑} ∈ V)
97, 8mpan 689 1 (𝐴𝑉 → {𝑥𝐴𝜑} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  {cab 2717  wnfc 2893  {crab 3443  Vcvv 3488  wss 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rab 3444  df-v 3490  df-in 3983  df-ss 3993
This theorem is referenced by:  rabexf  45036  stoweidlem27  45948  stoweidlem35  45956
  Copyright terms: Public domain W3C validator