Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabexgf Structured version   Visualization version   GIF version

Theorem rabexgf 42240
Description: A version of rabexg 5224 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypothesis
Ref Expression
rabexgf.1 𝑥𝐴
Assertion
Ref Expression
rabexgf (𝐴𝑉 → {𝑥𝐴𝜑} ∈ V)

Proof of Theorem rabexgf
StepHypRef Expression
1 df-rab 3070 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 simpl 486 . . . . 5 ((𝑥𝐴𝜑) → 𝑥𝐴)
32ss2abi 3980 . . . 4 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥𝑥𝐴}
4 rabexgf.1 . . . . 5 𝑥𝐴
54abid2f 2936 . . . 4 {𝑥𝑥𝐴} = 𝐴
63, 5sseqtri 3937 . . 3 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
71, 6eqsstri 3935 . 2 {𝑥𝐴𝜑} ⊆ 𝐴
8 ssexg 5216 . 2 (({𝑥𝐴𝜑} ⊆ 𝐴𝐴𝑉) → {𝑥𝐴𝜑} ∈ V)
97, 8mpan 690 1 (𝐴𝑉 → {𝑥𝐴𝜑} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2110  {cab 2714  wnfc 2884  {crab 3065  Vcvv 3408  wss 3866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-rab 3070  df-v 3410  df-in 3873  df-ss 3883
This theorem is referenced by:  rabexf  42356  stoweidlem27  43243  stoweidlem35  43251
  Copyright terms: Public domain W3C validator