Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabexgf Structured version   Visualization version   GIF version

Theorem rabexgf 45131
Description: A version of rabexg 5273 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypothesis
Ref Expression
rabexgf.1 𝑥𝐴
Assertion
Ref Expression
rabexgf (𝐴𝑉 → {𝑥𝐴𝜑} ∈ V)

Proof of Theorem rabexgf
StepHypRef Expression
1 df-rab 3396 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 simpl 482 . . . . 5 ((𝑥𝐴𝜑) → 𝑥𝐴)
32ss2abi 4013 . . . 4 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥𝑥𝐴}
4 rabexgf.1 . . . . 5 𝑥𝐴
54abid2f 2925 . . . 4 {𝑥𝑥𝐴} = 𝐴
63, 5sseqtri 3978 . . 3 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
71, 6eqsstri 3976 . 2 {𝑥𝐴𝜑} ⊆ 𝐴
8 ssexg 5259 . 2 (({𝑥𝐴𝜑} ⊆ 𝐴𝐴𝑉) → {𝑥𝐴𝜑} ∈ V)
97, 8mpan 690 1 (𝐴𝑉 → {𝑥𝐴𝜑} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  {cab 2709  wnfc 2879  {crab 3395  Vcvv 3436  wss 3897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-rab 3396  df-v 3438  df-in 3904  df-ss 3914
This theorem is referenced by:  rabexf  45241  stoweidlem27  46135  stoweidlem35  46143
  Copyright terms: Public domain W3C validator