MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  abssexg Structured version   Visualization version   GIF version

Theorem abssexg 5337
Description: Existence of a class of subsets. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
abssexg (𝐴𝑉 → {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem abssexg
StepHypRef Expression
1 pwexg 5333 . 2 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
2 df-pw 4565 . . . 4 𝒫 𝐴 = {𝑥𝑥𝐴}
32eleq1i 2819 . . 3 (𝒫 𝐴 ∈ V ↔ {𝑥𝑥𝐴} ∈ V)
4 simpl 482 . . . . 5 ((𝑥𝐴𝜑) → 𝑥𝐴)
54ss2abi 4030 . . . 4 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥𝑥𝐴}
6 ssexg 5278 . . . 4 (({𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥𝑥𝐴} ∧ {𝑥𝑥𝐴} ∈ V) → {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V)
75, 6mpan 690 . . 3 ({𝑥𝑥𝐴} ∈ V → {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V)
83, 7sylbi 217 . 2 (𝒫 𝐴 ∈ V → {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V)
91, 8syl 17 1 (𝐴𝑉 → {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  {cab 2707  Vcvv 3447  wss 3914  𝒫 cpw 4563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-pow 5320
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-in 3921  df-ss 3931  df-pw 4565
This theorem is referenced by:  pmex  8804  tgval  22842
  Copyright terms: Public domain W3C validator