Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  abssexg Structured version   Visualization version   GIF version

Theorem abssexg 5251
 Description: Existence of a class of subsets. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
abssexg (𝐴𝑉 → {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem abssexg
StepHypRef Expression
1 pwexg 5247 . 2 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
2 df-pw 4502 . . . 4 𝒫 𝐴 = {𝑥𝑥𝐴}
32eleq1i 2883 . . 3 (𝒫 𝐴 ∈ V ↔ {𝑥𝑥𝐴} ∈ V)
4 simpl 486 . . . . 5 ((𝑥𝐴𝜑) → 𝑥𝐴)
54ss2abi 3997 . . . 4 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥𝑥𝐴}
6 ssexg 5194 . . . 4 (({𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥𝑥𝐴} ∧ {𝑥𝑥𝐴} ∈ V) → {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V)
75, 6mpan 689 . . 3 ({𝑥𝑥𝐴} ∈ V → {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V)
83, 7sylbi 220 . 2 (𝒫 𝐴 ∈ V → {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V)
91, 8syl 17 1 (𝐴𝑉 → {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∈ wcel 2112  {cab 2779  Vcvv 3444   ⊆ wss 3884  𝒫 cpw 4500 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-pow 5234 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-rab 3118  df-v 3446  df-in 3891  df-ss 3901  df-pw 4502 This theorem is referenced by:  pmex  8398  tgval  21563
 Copyright terms: Public domain W3C validator