| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > abssexg | Structured version Visualization version GIF version | ||
| Description: Existence of a class of subsets. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| abssexg | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg 5353 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
| 2 | df-pw 4582 | . . . 4 ⊢ 𝒫 𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} | |
| 3 | 2 | eleq1i 2826 | . . 3 ⊢ (𝒫 𝐴 ∈ V ↔ {𝑥 ∣ 𝑥 ⊆ 𝐴} ∈ V) |
| 4 | simpl 482 | . . . . 5 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝜑) → 𝑥 ⊆ 𝐴) | |
| 5 | 4 | ss2abi 4047 | . . . 4 ⊢ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ⊆ {𝑥 ∣ 𝑥 ⊆ 𝐴} |
| 6 | ssexg 5298 | . . . 4 ⊢ (({𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ⊆ {𝑥 ∣ 𝑥 ⊆ 𝐴} ∧ {𝑥 ∣ 𝑥 ⊆ 𝐴} ∈ V) → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V) | |
| 7 | 5, 6 | mpan 690 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ⊆ 𝐴} ∈ V → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V) |
| 8 | 3, 7 | sylbi 217 | . 2 ⊢ (𝒫 𝐴 ∈ V → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V) |
| 9 | 1, 8 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 {cab 2714 Vcvv 3464 ⊆ wss 3931 𝒫 cpw 4580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-pow 5340 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-in 3938 df-ss 3948 df-pw 4582 |
| This theorem is referenced by: pmex 8850 tgval 22898 |
| Copyright terms: Public domain | W3C validator |