|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > abssexg | Structured version Visualization version GIF version | ||
| Description: Existence of a class of subsets. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) | 
| Ref | Expression | 
|---|---|
| abssexg | ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pwexg 5377 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
| 2 | df-pw 4601 | . . . 4 ⊢ 𝒫 𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} | |
| 3 | 2 | eleq1i 2831 | . . 3 ⊢ (𝒫 𝐴 ∈ V ↔ {𝑥 ∣ 𝑥 ⊆ 𝐴} ∈ V) | 
| 4 | simpl 482 | . . . . 5 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝜑) → 𝑥 ⊆ 𝐴) | |
| 5 | 4 | ss2abi 4066 | . . . 4 ⊢ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ⊆ {𝑥 ∣ 𝑥 ⊆ 𝐴} | 
| 6 | ssexg 5322 | . . . 4 ⊢ (({𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ⊆ {𝑥 ∣ 𝑥 ⊆ 𝐴} ∧ {𝑥 ∣ 𝑥 ⊆ 𝐴} ∈ V) → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V) | |
| 7 | 5, 6 | mpan 690 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ⊆ 𝐴} ∈ V → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V) | 
| 8 | 3, 7 | sylbi 217 | . 2 ⊢ (𝒫 𝐴 ∈ V → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V) | 
| 9 | 1, 8 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑)} ∈ V) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 {cab 2713 Vcvv 3479 ⊆ wss 3950 𝒫 cpw 4599 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-pow 5364 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-in 3957 df-ss 3967 df-pw 4601 | 
| This theorem is referenced by: pmex 8872 tgval 22963 | 
| Copyright terms: Public domain | W3C validator |