| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwexg | Structured version Visualization version GIF version | ||
| Description: Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003.) |
| Ref | Expression |
|---|---|
| pwexg | ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 4577 | . . 3 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 2 | 1 | eleq1d 2813 | . 2 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ V ↔ 𝒫 𝐴 ∈ V)) |
| 3 | vpwex 5332 | . 2 ⊢ 𝒫 𝑥 ∈ V | |
| 4 | 2, 3 | vtoclg 3520 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 𝒫 cpw 4563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-pow 5320 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-pw 4565 |
| This theorem is referenced by: pwexd 5334 pwex 5335 pwel 5336 abssexg 5337 snexALT 5338 xpexg 7726 uniexr 7739 pwexb 7742 fabexgOLD 7915 pw2eng 9047 2pwne 9097 disjen 9098 domss2 9100 ssenen 9115 fineqvlem 9209 tskwe 9903 ween 9988 acni 9998 acnnum 10005 infpwfien 10015 pwdju1 10144 ackbij1b 10191 fictb 10197 fin2i 10248 isfin2-2 10272 ssfin3ds 10283 fin23lem32 10297 fin23lem39 10303 fin23lem41 10305 isfin1-3 10339 fin1a2lem12 10364 canth3 10514 ondomon 10516 canthnum 10602 canthwe 10604 gchxpidm 10622 hashbcval 16973 restid2 17393 prdsplusg 17421 prdsvsca 17423 ismre 17551 isacs1i 17618 sscpwex 17777 fpwipodrs 18499 acsdrscl 18505 opsrval 21953 toponsspwpw 22809 tgdom 22865 distop 22882 fctop 22891 cctop 22893 ppttop 22894 epttop 22896 cldval 22910 ntrfval 22911 clsfval 22912 neifval 22986 neif 22987 neival 22989 neiptoptop 23018 lpfval 23025 restfpw 23066 islocfin 23404 dissnref 23415 kgenval 23422 dfac14lem 23504 qtopval 23582 isfbas 23716 fbssfi 23724 fsubbas 23754 fgval 23757 filssufil 23799 hauspwpwf1 23874 hauspwpwdom 23875 flimfnfcls 23915 tsmsfbas 24015 eltsms 24020 ustval 24090 utopval 24120 madeval 27760 cusgrexilem1 29366 indv 32775 pwrssmgc 32926 sigaex 34100 sigaval 34101 pwsiga 34120 pwldsys 34147 ldgenpisyslem1 34153 omsval 34284 carsgval 34294 coinflipspace 34472 iscvm 35246 cvmsval 35253 ex-sategoelel 35408 altxpexg 35966 hfpw 36173 fnemeet2 36355 fnejoin1 36356 bj-restpw 37080 elrfi 42682 elrfirn 42683 kelac2 43054 enmappwid 43989 rfovd 43990 fsovrfovd 43998 dssmapfv2d 44007 clsk3nimkb 44029 clsneif1o 44093 clsneicnv 44094 clsneikex 44095 clsneinex 44096 neicvgmex 44106 neicvgel1 44108 pwsal 46313 prproropen 47506 stgrvtx 47950 stgriedg 47951 |
| Copyright terms: Public domain | W3C validator |