![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwexg | Structured version Visualization version GIF version |
Description: Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003.) |
Ref | Expression |
---|---|
pwexg | ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4636 | . . 3 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
2 | 1 | eleq1d 2829 | . 2 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ V ↔ 𝒫 𝐴 ∈ V)) |
3 | vpwex 5395 | . 2 ⊢ 𝒫 𝑥 ∈ V | |
4 | 2, 3 | vtoclg 3566 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-pow 5383 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-pw 4624 |
This theorem is referenced by: pwexd 5397 pwex 5398 pwel 5399 abssexg 5400 snexALT 5401 xpexg 7785 uniexr 7798 pwexb 7801 fabexgOLD 7977 pw2eng 9144 2pwne 9199 disjen 9200 domss2 9202 ssenen 9217 fineqvlem 9325 tskwe 10019 ween 10104 acni 10114 acnnum 10121 infpwfien 10131 pwdju1 10260 ackbij1b 10307 fictb 10313 fin2i 10364 isfin2-2 10388 ssfin3ds 10399 fin23lem32 10413 fin23lem39 10419 fin23lem41 10421 isfin1-3 10455 fin1a2lem12 10480 canth3 10630 ondomon 10632 canthnum 10718 canthwe 10720 gchxpidm 10738 hashbcval 17049 restid2 17490 prdsplusg 17518 prdsvsca 17520 ismre 17648 isacs1i 17715 sscpwex 17876 fpwipodrs 18610 acsdrscl 18616 opsrval 22087 toponsspwpw 22949 tgdom 23006 distop 23023 fctop 23032 cctop 23034 ppttop 23035 epttop 23037 cldval 23052 ntrfval 23053 clsfval 23054 neifval 23128 neif 23129 neival 23131 neiptoptop 23160 lpfval 23167 restfpw 23208 islocfin 23546 dissnref 23557 kgenval 23564 dfac14lem 23646 qtopval 23724 isfbas 23858 fbssfi 23866 fsubbas 23896 fgval 23899 filssufil 23941 hauspwpwf1 24016 hauspwpwdom 24017 flimfnfcls 24057 tsmsfbas 24157 eltsms 24162 ustval 24232 utopval 24262 madeval 27909 cusgrexilem1 29474 pwrssmgc 32973 indv 33976 sigaex 34074 sigaval 34075 pwsiga 34094 pwldsys 34121 ldgenpisyslem1 34127 omsval 34258 carsgval 34268 coinflipspace 34445 iscvm 35227 cvmsval 35234 ex-sategoelel 35389 altxpexg 35942 hfpw 36149 fnemeet2 36333 fnejoin1 36334 bj-restpw 37058 elrfi 42650 elrfirn 42651 kelac2 43022 enmappwid 43962 rfovd 43963 fsovrfovd 43971 dssmapfv2d 43980 clsk3nimkb 44002 clsneif1o 44066 clsneicnv 44067 clsneikex 44068 clsneinex 44069 neicvgmex 44079 neicvgel1 44081 pwsal 46236 prproropen 47382 |
Copyright terms: Public domain | W3C validator |