|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pwexg | Structured version Visualization version GIF version | ||
| Description: Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003.) | 
| Ref | Expression | 
|---|---|
| pwexg | ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pweq 4613 | . . 3 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 2 | 1 | eleq1d 2825 | . 2 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ V ↔ 𝒫 𝐴 ∈ V)) | 
| 3 | vpwex 5376 | . 2 ⊢ 𝒫 𝑥 ∈ V | |
| 4 | 2, 3 | vtoclg 3553 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3479 𝒫 cpw 4599 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-pow 5364 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-ss 3967 df-pw 4601 | 
| This theorem is referenced by: pwexd 5378 pwex 5379 pwel 5380 abssexg 5381 snexALT 5382 xpexg 7771 uniexr 7784 pwexb 7787 fabexgOLD 7962 pw2eng 9119 2pwne 9174 disjen 9175 domss2 9177 ssenen 9192 fineqvlem 9299 tskwe 9991 ween 10076 acni 10086 acnnum 10093 infpwfien 10103 pwdju1 10232 ackbij1b 10279 fictb 10285 fin2i 10336 isfin2-2 10360 ssfin3ds 10371 fin23lem32 10385 fin23lem39 10391 fin23lem41 10393 isfin1-3 10427 fin1a2lem12 10452 canth3 10602 ondomon 10604 canthnum 10690 canthwe 10692 gchxpidm 10710 hashbcval 17041 restid2 17476 prdsplusg 17504 prdsvsca 17506 ismre 17634 isacs1i 17701 sscpwex 17860 fpwipodrs 18586 acsdrscl 18592 opsrval 22065 toponsspwpw 22929 tgdom 22986 distop 23003 fctop 23012 cctop 23014 ppttop 23015 epttop 23017 cldval 23032 ntrfval 23033 clsfval 23034 neifval 23108 neif 23109 neival 23111 neiptoptop 23140 lpfval 23147 restfpw 23188 islocfin 23526 dissnref 23537 kgenval 23544 dfac14lem 23626 qtopval 23704 isfbas 23838 fbssfi 23846 fsubbas 23876 fgval 23879 filssufil 23921 hauspwpwf1 23996 hauspwpwdom 23997 flimfnfcls 24037 tsmsfbas 24137 eltsms 24142 ustval 24212 utopval 24242 madeval 27892 cusgrexilem1 29457 indv 32838 pwrssmgc 32991 sigaex 34112 sigaval 34113 pwsiga 34132 pwldsys 34159 ldgenpisyslem1 34165 omsval 34296 carsgval 34306 coinflipspace 34484 iscvm 35265 cvmsval 35272 ex-sategoelel 35427 altxpexg 35980 hfpw 36187 fnemeet2 36369 fnejoin1 36370 bj-restpw 37094 elrfi 42710 elrfirn 42711 kelac2 43082 enmappwid 44018 rfovd 44019 fsovrfovd 44027 dssmapfv2d 44036 clsk3nimkb 44058 clsneif1o 44122 clsneicnv 44123 clsneikex 44124 clsneinex 44125 neicvgmex 44135 neicvgel1 44137 pwsal 46335 prproropen 47500 stgrvtx 47926 stgriedg 47927 | 
| Copyright terms: Public domain | W3C validator |