| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwexg | Structured version Visualization version GIF version | ||
| Description: Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003.) |
| Ref | Expression |
|---|---|
| pwexg | ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 4564 | . . 3 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 2 | 1 | eleq1d 2816 | . 2 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ V ↔ 𝒫 𝐴 ∈ V)) |
| 3 | vpwex 5315 | . 2 ⊢ 𝒫 𝑥 ∈ V | |
| 4 | 2, 3 | vtoclg 3509 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 𝒫 cpw 4550 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-pow 5303 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3919 df-pw 4552 |
| This theorem is referenced by: pwexd 5317 pwex 5318 pwel 5319 abssexg 5320 snexALT 5321 xpexg 7683 uniexr 7696 pwexb 7699 fabexgOLD 7869 pw2eng 8996 2pwne 9046 disjen 9047 domss2 9049 ssenen 9064 fineqvlem 9150 tskwe 9843 ween 9926 acni 9936 acnnum 9943 infpwfien 9953 pwdju1 10082 ackbij1b 10129 fictb 10135 fin2i 10186 isfin2-2 10210 ssfin3ds 10221 fin23lem32 10235 fin23lem39 10241 fin23lem41 10243 isfin1-3 10277 fin1a2lem12 10302 canth3 10452 ondomon 10454 canthnum 10540 canthwe 10542 gchxpidm 10560 hashbcval 16914 restid2 17334 prdsplusg 17362 prdsvsca 17364 ismre 17492 isacs1i 17563 sscpwex 17722 fpwipodrs 18446 acsdrscl 18452 opsrval 21982 toponsspwpw 22838 tgdom 22894 distop 22911 fctop 22920 cctop 22922 ppttop 22923 epttop 22925 cldval 22939 ntrfval 22940 clsfval 22941 neifval 23015 neif 23016 neival 23018 neiptoptop 23047 lpfval 23054 restfpw 23095 islocfin 23433 dissnref 23444 kgenval 23451 dfac14lem 23533 qtopval 23611 isfbas 23745 fbssfi 23753 fsubbas 23783 fgval 23786 filssufil 23828 hauspwpwf1 23903 hauspwpwdom 23904 flimfnfcls 23944 tsmsfbas 24044 eltsms 24049 ustval 24119 utopval 24148 madeval 27794 cusgrexilem1 29418 indv 32831 pwrssmgc 32979 sigaex 34121 sigaval 34122 pwsiga 34141 pwldsys 34168 ldgenpisyslem1 34174 omsval 34304 carsgval 34314 coinflipspace 34492 iscvm 35301 cvmsval 35308 ex-sategoelel 35463 altxpexg 36018 hfpw 36225 fnemeet2 36407 fnejoin1 36408 bj-restpw 37132 elrfi 42733 elrfirn 42734 kelac2 43104 enmappwid 44039 rfovd 44040 fsovrfovd 44048 dssmapfv2d 44057 clsk3nimkb 44079 clsneif1o 44143 clsneicnv 44144 clsneikex 44145 clsneinex 44146 neicvgmex 44156 neicvgel1 44158 pwsal 46359 prproropen 47545 stgrvtx 47991 stgriedg 47992 |
| Copyright terms: Public domain | W3C validator |