![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwexg | Structured version Visualization version GIF version |
Description: Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003.) |
Ref | Expression |
---|---|
pwexg | ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4617 | . . 3 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
2 | 1 | eleq1d 2816 | . 2 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ V ↔ 𝒫 𝐴 ∈ V)) |
3 | vpwex 5376 | . 2 ⊢ 𝒫 𝑥 ∈ V | |
4 | 2, 3 | vtoclg 3541 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 Vcvv 3472 𝒫 cpw 4603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5300 ax-pow 5364 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-v 3474 df-in 3956 df-ss 3966 df-pw 4605 |
This theorem is referenced by: pwexd 5378 pwex 5379 pwel 5380 abssexg 5381 snexALT 5382 xpexg 7741 uniexr 7754 pwexb 7757 fabexg 7929 pw2eng 9082 2pwne 9137 disjen 9138 domss2 9140 ssenen 9155 fineqvlem 9266 tskwe 9949 ween 10034 acni 10044 acnnum 10051 infpwfien 10061 pwdju1 10189 ackbij1b 10238 fictb 10244 fin2i 10294 isfin2-2 10318 ssfin3ds 10329 fin23lem32 10343 fin23lem39 10349 fin23lem41 10351 isfin1-3 10385 fin1a2lem12 10410 canth3 10560 ondomon 10562 canthnum 10648 canthwe 10650 gchxpidm 10668 hashbcval 16941 restid2 17382 prdsplusg 17410 prdsvsca 17412 ismre 17540 isacs1i 17607 sscpwex 17768 fpwipodrs 18499 acsdrscl 18505 opsrval 21822 toponsspwpw 22646 tgdom 22703 distop 22720 fctop 22729 cctop 22731 ppttop 22732 epttop 22734 cldval 22749 ntrfval 22750 clsfval 22751 neifval 22825 neif 22826 neival 22828 neiptoptop 22857 lpfval 22864 restfpw 22905 islocfin 23243 dissnref 23254 kgenval 23261 dfac14lem 23343 qtopval 23421 isfbas 23555 fbssfi 23563 fsubbas 23593 fgval 23596 filssufil 23638 hauspwpwf1 23713 hauspwpwdom 23714 flimfnfcls 23754 tsmsfbas 23854 eltsms 23859 ustval 23929 utopval 23959 madeval 27582 cusgrexilem1 28961 pwrssmgc 32435 indv 33306 sigaex 33404 sigaval 33405 pwsiga 33424 pwldsys 33451 ldgenpisyslem1 33457 omsval 33588 carsgval 33598 coinflipspace 33775 iscvm 34546 cvmsval 34553 ex-sategoelel 34708 altxpexg 35252 hfpw 35459 fnemeet2 35557 fnejoin1 35558 bj-restpw 36278 elrfi 41736 elrfirn 41737 kelac2 42111 enmappwid 43055 rfovd 43056 fsovrfovd 43064 dssmapfv2d 43073 clsk3nimkb 43095 clsneif1o 43159 clsneicnv 43160 clsneikex 43161 clsneinex 43162 neicvgmex 43172 neicvgel1 43174 pwsal 45331 prproropen 46476 |
Copyright terms: Public domain | W3C validator |