| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwexg | Structured version Visualization version GIF version | ||
| Description: Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003.) |
| Ref | Expression |
|---|---|
| pwexg | ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 4594 | . . 3 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 2 | 1 | eleq1d 2818 | . 2 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ V ↔ 𝒫 𝐴 ∈ V)) |
| 3 | vpwex 5357 | . 2 ⊢ 𝒫 𝑥 ∈ V | |
| 4 | 2, 3 | vtoclg 3537 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3463 𝒫 cpw 4580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-pow 5345 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-ss 3948 df-pw 4582 |
| This theorem is referenced by: pwexd 5359 pwex 5360 pwel 5361 abssexg 5362 snexALT 5363 xpexg 7752 uniexr 7765 pwexb 7768 fabexgOLD 7943 pw2eng 9100 2pwne 9155 disjen 9156 domss2 9158 ssenen 9173 fineqvlem 9280 tskwe 9972 ween 10057 acni 10067 acnnum 10074 infpwfien 10084 pwdju1 10213 ackbij1b 10260 fictb 10266 fin2i 10317 isfin2-2 10341 ssfin3ds 10352 fin23lem32 10366 fin23lem39 10372 fin23lem41 10374 isfin1-3 10408 fin1a2lem12 10433 canth3 10583 ondomon 10585 canthnum 10671 canthwe 10673 gchxpidm 10691 hashbcval 17022 restid2 17446 prdsplusg 17474 prdsvsca 17476 ismre 17604 isacs1i 17671 sscpwex 17830 fpwipodrs 18554 acsdrscl 18560 opsrval 22018 toponsspwpw 22876 tgdom 22932 distop 22949 fctop 22958 cctop 22960 ppttop 22961 epttop 22963 cldval 22977 ntrfval 22978 clsfval 22979 neifval 23053 neif 23054 neival 23056 neiptoptop 23085 lpfval 23092 restfpw 23133 islocfin 23471 dissnref 23482 kgenval 23489 dfac14lem 23571 qtopval 23649 isfbas 23783 fbssfi 23791 fsubbas 23821 fgval 23824 filssufil 23866 hauspwpwf1 23941 hauspwpwdom 23942 flimfnfcls 23982 tsmsfbas 24082 eltsms 24087 ustval 24157 utopval 24187 madeval 27827 cusgrexilem1 29384 indv 32777 pwrssmgc 32929 sigaex 34070 sigaval 34071 pwsiga 34090 pwldsys 34117 ldgenpisyslem1 34123 omsval 34254 carsgval 34264 coinflipspace 34442 iscvm 35223 cvmsval 35230 ex-sategoelel 35385 altxpexg 35938 hfpw 36145 fnemeet2 36327 fnejoin1 36328 bj-restpw 37052 elrfi 42668 elrfirn 42669 kelac2 43040 enmappwid 43975 rfovd 43976 fsovrfovd 43984 dssmapfv2d 43993 clsk3nimkb 44015 clsneif1o 44079 clsneicnv 44080 clsneikex 44081 clsneinex 44082 neicvgmex 44092 neicvgel1 44094 pwsal 46287 prproropen 47453 stgrvtx 47879 stgriedg 47880 |
| Copyright terms: Public domain | W3C validator |