| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwexg | Structured version Visualization version GIF version | ||
| Description: Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003.) |
| Ref | Expression |
|---|---|
| pwexg | ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 4594 | . . 3 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 2 | 1 | eleq1d 2820 | . 2 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ V ↔ 𝒫 𝐴 ∈ V)) |
| 3 | vpwex 5352 | . 2 ⊢ 𝒫 𝑥 ∈ V | |
| 4 | 2, 3 | vtoclg 3538 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 𝒫 cpw 4580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-pow 5340 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-ss 3948 df-pw 4582 |
| This theorem is referenced by: pwexd 5354 pwex 5355 pwel 5356 abssexg 5357 snexALT 5358 xpexg 7749 uniexr 7762 pwexb 7765 fabexgOLD 7940 pw2eng 9097 2pwne 9152 disjen 9153 domss2 9155 ssenen 9170 fineqvlem 9275 tskwe 9969 ween 10054 acni 10064 acnnum 10071 infpwfien 10081 pwdju1 10210 ackbij1b 10257 fictb 10263 fin2i 10314 isfin2-2 10338 ssfin3ds 10349 fin23lem32 10363 fin23lem39 10369 fin23lem41 10371 isfin1-3 10405 fin1a2lem12 10430 canth3 10580 ondomon 10582 canthnum 10668 canthwe 10670 gchxpidm 10688 hashbcval 17027 restid2 17449 prdsplusg 17477 prdsvsca 17479 ismre 17607 isacs1i 17674 sscpwex 17833 fpwipodrs 18555 acsdrscl 18561 opsrval 22009 toponsspwpw 22865 tgdom 22921 distop 22938 fctop 22947 cctop 22949 ppttop 22950 epttop 22952 cldval 22966 ntrfval 22967 clsfval 22968 neifval 23042 neif 23043 neival 23045 neiptoptop 23074 lpfval 23081 restfpw 23122 islocfin 23460 dissnref 23471 kgenval 23478 dfac14lem 23560 qtopval 23638 isfbas 23772 fbssfi 23780 fsubbas 23810 fgval 23813 filssufil 23855 hauspwpwf1 23930 hauspwpwdom 23931 flimfnfcls 23971 tsmsfbas 24071 eltsms 24076 ustval 24146 utopval 24176 madeval 27817 cusgrexilem1 29423 indv 32834 pwrssmgc 32985 sigaex 34146 sigaval 34147 pwsiga 34166 pwldsys 34193 ldgenpisyslem1 34199 omsval 34330 carsgval 34340 coinflipspace 34518 iscvm 35286 cvmsval 35293 ex-sategoelel 35448 altxpexg 36001 hfpw 36208 fnemeet2 36390 fnejoin1 36391 bj-restpw 37115 elrfi 42684 elrfirn 42685 kelac2 43056 enmappwid 43991 rfovd 43992 fsovrfovd 44000 dssmapfv2d 44009 clsk3nimkb 44031 clsneif1o 44095 clsneicnv 44096 clsneikex 44097 clsneinex 44098 neicvgmex 44108 neicvgel1 44110 pwsal 46311 prproropen 47489 stgrvtx 47933 stgriedg 47934 |
| Copyright terms: Public domain | W3C validator |