| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwexg | Structured version Visualization version GIF version | ||
| Description: Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003.) |
| Ref | Expression |
|---|---|
| pwexg | ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 4563 | . . 3 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 2 | 1 | eleq1d 2818 | . 2 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ V ↔ 𝒫 𝐴 ∈ V)) |
| 3 | vpwex 5317 | . 2 ⊢ 𝒫 𝑥 ∈ V | |
| 4 | 2, 3 | vtoclg 3508 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 𝒫 cpw 4549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-pow 5305 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-ss 3915 df-pw 4551 |
| This theorem is referenced by: pwexd 5319 pwex 5320 pwel 5321 abssexg 5322 snexALT 5323 xpexg 7689 uniexr 7702 pwexb 7705 fabexgOLD 7875 pw2eng 9003 2pwne 9053 disjen 9054 domss2 9056 ssenen 9071 fineqvlem 9157 tskwe 9850 ween 9933 acni 9943 acnnum 9950 infpwfien 9960 pwdju1 10089 ackbij1b 10136 fictb 10142 fin2i 10193 isfin2-2 10217 ssfin3ds 10228 fin23lem32 10242 fin23lem39 10248 fin23lem41 10250 isfin1-3 10284 fin1a2lem12 10309 canth3 10459 ondomon 10461 canthnum 10547 canthwe 10549 gchxpidm 10567 hashbcval 16916 restid2 17336 prdsplusg 17364 prdsvsca 17366 ismre 17494 isacs1i 17565 sscpwex 17724 fpwipodrs 18448 acsdrscl 18454 opsrval 21982 toponsspwpw 22838 tgdom 22894 distop 22911 fctop 22920 cctop 22922 ppttop 22923 epttop 22925 cldval 22939 ntrfval 22940 clsfval 22941 neifval 23015 neif 23016 neival 23018 neiptoptop 23047 lpfval 23054 restfpw 23095 islocfin 23433 dissnref 23444 kgenval 23451 dfac14lem 23533 qtopval 23611 isfbas 23745 fbssfi 23753 fsubbas 23783 fgval 23786 filssufil 23828 hauspwpwf1 23903 hauspwpwdom 23904 flimfnfcls 23944 tsmsfbas 24044 eltsms 24049 ustval 24119 utopval 24148 madeval 27794 cusgrexilem1 29419 indv 32838 pwrssmgc 32988 sigaex 34144 sigaval 34145 pwsiga 34164 pwldsys 34191 ldgenpisyslem1 34197 omsval 34327 carsgval 34337 coinflipspace 34515 iscvm 35324 cvmsval 35331 ex-sategoelel 35486 altxpexg 36043 hfpw 36250 fnemeet2 36432 fnejoin1 36433 bj-restpw 37157 elrfi 42812 elrfirn 42813 kelac2 43183 enmappwid 44118 rfovd 44119 fsovrfovd 44127 dssmapfv2d 44136 clsk3nimkb 44158 clsneif1o 44222 clsneicnv 44223 clsneikex 44224 clsneinex 44225 neicvgmex 44235 neicvgel1 44237 pwsal 46438 prproropen 47633 stgrvtx 48079 stgriedg 48080 |
| Copyright terms: Public domain | W3C validator |