Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwexg | Structured version Visualization version GIF version |
Description: Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003.) |
Ref | Expression |
---|---|
pwexg | ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4550 | . . 3 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
2 | 1 | eleq1d 2824 | . 2 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ V ↔ 𝒫 𝐴 ∈ V)) |
3 | vpwex 5301 | . 2 ⊢ 𝒫 𝑥 ∈ V | |
4 | 2, 3 | vtoclg 3506 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3433 𝒫 cpw 4534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 ax-sep 5224 ax-pow 5289 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3435 df-in 3895 df-ss 3905 df-pw 4536 |
This theorem is referenced by: pwexd 5303 pwex 5304 pwel 5305 abssexg 5306 snexALT 5307 xpexg 7609 uniexr 7622 pwexb 7625 fabexg 7790 pw2eng 8874 2pwne 8929 disjen 8930 domss2 8932 ssenen 8947 fineqvlem 9046 tskwe 9717 ween 9800 acni 9810 acnnum 9817 infpwfien 9827 pwdju1 9955 ackbij1b 10004 fictb 10010 fin2i 10060 isfin2-2 10084 ssfin3ds 10095 fin23lem32 10109 fin23lem39 10115 fin23lem41 10117 isfin1-3 10151 fin1a2lem12 10176 canth3 10326 ondomon 10328 canthnum 10414 canthwe 10416 gchxpidm 10434 hashbcval 16712 restid2 17150 prdsplusg 17178 prdsvsca 17180 ismre 17308 isacs1i 17375 sscpwex 17536 fpwipodrs 18267 acsdrscl 18273 opsrval 21256 toponsspwpw 22080 tgdom 22137 distop 22154 fctop 22163 cctop 22165 ppttop 22166 epttop 22168 cldval 22183 ntrfval 22184 clsfval 22185 neifval 22259 neif 22260 neival 22262 neiptoptop 22291 lpfval 22298 restfpw 22339 islocfin 22677 dissnref 22688 kgenval 22695 dfac14lem 22777 qtopval 22855 isfbas 22989 fbssfi 22997 fsubbas 23027 fgval 23030 filssufil 23072 hauspwpwf1 23147 hauspwpwdom 23148 flimfnfcls 23188 tsmsfbas 23288 eltsms 23293 ustval 23363 utopval 23393 cusgrexilem1 27815 pwrssmgc 31287 indv 31989 sigaex 32087 sigaval 32088 pwsiga 32107 pwldsys 32134 ldgenpisyslem1 32140 omsval 32269 carsgval 32279 coinflipspace 32456 iscvm 33230 cvmsval 33237 ex-sategoelel 33392 madeval 34045 altxpexg 34289 hfpw 34496 fnemeet2 34565 fnejoin1 34566 bj-restpw 35272 elrfi 40523 elrfirn 40524 kelac2 40897 enmappwid 41615 rfovd 41616 fsovrfovd 41624 dssmapfv2d 41633 clsk3nimkb 41657 clsneif1o 41721 clsneicnv 41722 clsneikex 41723 clsneinex 41724 neicvgmex 41734 neicvgel1 41736 pwsal 43863 prproropen 44971 |
Copyright terms: Public domain | W3C validator |