Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwexg | Structured version Visualization version GIF version |
Description: Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003.) |
Ref | Expression |
---|---|
pwexg | ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4546 | . . 3 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
2 | 1 | eleq1d 2823 | . 2 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ V ↔ 𝒫 𝐴 ∈ V)) |
3 | vpwex 5295 | . 2 ⊢ 𝒫 𝑥 ∈ V | |
4 | 2, 3 | vtoclg 3495 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 𝒫 cpw 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-pow 5283 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 |
This theorem is referenced by: pwexd 5297 pwex 5298 pwel 5299 abssexg 5300 snexALT 5301 xpexg 7578 uniexr 7591 pwexb 7594 fabexg 7755 pw2eng 8818 2pwne 8869 disjen 8870 domss2 8872 ssenen 8887 fineqvlem 8966 tskwe 9639 ween 9722 acni 9732 acnnum 9739 infpwfien 9749 pwdju1 9877 ackbij1b 9926 fictb 9932 fin2i 9982 isfin2-2 10006 ssfin3ds 10017 fin23lem32 10031 fin23lem39 10037 fin23lem41 10039 isfin1-3 10073 fin1a2lem12 10098 canth3 10248 ondomon 10250 canthnum 10336 canthwe 10338 gchxpidm 10356 hashbcval 16631 restid2 17058 prdsplusg 17086 prdsvsca 17088 ismre 17216 isacs1i 17283 sscpwex 17444 fpwipodrs 18173 acsdrscl 18179 opsrval 21157 toponsspwpw 21979 tgdom 22036 distop 22053 fctop 22062 cctop 22064 ppttop 22065 epttop 22067 cldval 22082 ntrfval 22083 clsfval 22084 neifval 22158 neif 22159 neival 22161 neiptoptop 22190 lpfval 22197 restfpw 22238 islocfin 22576 dissnref 22587 kgenval 22594 dfac14lem 22676 qtopval 22754 isfbas 22888 fbssfi 22896 fsubbas 22926 fgval 22929 filssufil 22971 hauspwpwf1 23046 hauspwpwdom 23047 flimfnfcls 23087 tsmsfbas 23187 eltsms 23192 ustval 23262 utopval 23292 cusgrexilem1 27709 pwrssmgc 31180 indv 31880 sigaex 31978 sigaval 31979 pwsiga 31998 pwldsys 32025 ldgenpisyslem1 32031 omsval 32160 carsgval 32170 coinflipspace 32347 iscvm 33121 cvmsval 33128 ex-sategoelel 33283 madeval 33963 altxpexg 34207 hfpw 34414 fnemeet2 34483 fnejoin1 34484 bj-restpw 35190 elrfi 40432 elrfirn 40433 kelac2 40806 enmappwid 41497 rfovd 41498 fsovrfovd 41506 dssmapfv2d 41515 clsk3nimkb 41539 clsneif1o 41603 clsneicnv 41604 clsneikex 41605 clsneinex 41606 neicvgmex 41616 neicvgel1 41618 pwsal 43746 prproropen 44848 |
Copyright terms: Public domain | W3C validator |