![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwexg | Structured version Visualization version GIF version |
Description: Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003.) |
Ref | Expression |
---|---|
pwexg | ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4615 | . . 3 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
2 | 1 | eleq1d 2818 | . 2 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ V ↔ 𝒫 𝐴 ∈ V)) |
3 | vpwex 5374 | . 2 ⊢ 𝒫 𝑥 ∈ V | |
4 | 2, 3 | vtoclg 3556 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 𝒫 cpw 4601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-pow 5362 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3954 df-ss 3964 df-pw 4603 |
This theorem is referenced by: pwexd 5376 pwex 5377 pwel 5378 abssexg 5379 snexALT 5380 xpexg 7733 uniexr 7746 pwexb 7749 fabexg 7921 pw2eng 9074 2pwne 9129 disjen 9130 domss2 9132 ssenen 9147 fineqvlem 9258 tskwe 9941 ween 10026 acni 10036 acnnum 10043 infpwfien 10053 pwdju1 10181 ackbij1b 10230 fictb 10236 fin2i 10286 isfin2-2 10310 ssfin3ds 10321 fin23lem32 10335 fin23lem39 10341 fin23lem41 10343 isfin1-3 10377 fin1a2lem12 10402 canth3 10552 ondomon 10554 canthnum 10640 canthwe 10642 gchxpidm 10660 hashbcval 16931 restid2 17372 prdsplusg 17400 prdsvsca 17402 ismre 17530 isacs1i 17597 sscpwex 17758 fpwipodrs 18489 acsdrscl 18495 opsrval 21592 toponsspwpw 22415 tgdom 22472 distop 22489 fctop 22498 cctop 22500 ppttop 22501 epttop 22503 cldval 22518 ntrfval 22519 clsfval 22520 neifval 22594 neif 22595 neival 22597 neiptoptop 22626 lpfval 22633 restfpw 22674 islocfin 23012 dissnref 23023 kgenval 23030 dfac14lem 23112 qtopval 23190 isfbas 23324 fbssfi 23332 fsubbas 23362 fgval 23365 filssufil 23407 hauspwpwf1 23482 hauspwpwdom 23483 flimfnfcls 23523 tsmsfbas 23623 eltsms 23628 ustval 23698 utopval 23728 madeval 27336 cusgrexilem1 28685 pwrssmgc 32157 indv 32998 sigaex 33096 sigaval 33097 pwsiga 33116 pwldsys 33143 ldgenpisyslem1 33149 omsval 33280 carsgval 33290 coinflipspace 33467 iscvm 34238 cvmsval 34245 ex-sategoelel 34400 altxpexg 34938 hfpw 35145 fnemeet2 35240 fnejoin1 35241 bj-restpw 35961 elrfi 41417 elrfirn 41418 kelac2 41792 enmappwid 42736 rfovd 42737 fsovrfovd 42745 dssmapfv2d 42754 clsk3nimkb 42776 clsneif1o 42840 clsneicnv 42841 clsneikex 42842 clsneinex 42843 neicvgmex 42853 neicvgel1 42855 pwsal 45017 prproropen 46162 |
Copyright terms: Public domain | W3C validator |