| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwexg | Structured version Visualization version GIF version | ||
| Description: Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003.) |
| Ref | Expression |
|---|---|
| pwexg | ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 4567 | . . 3 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
| 2 | 1 | eleq1d 2813 | . 2 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ V ↔ 𝒫 𝐴 ∈ V)) |
| 3 | vpwex 5319 | . 2 ⊢ 𝒫 𝑥 ∈ V | |
| 4 | 2, 3 | vtoclg 3511 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 𝒫 cpw 4553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-pow 5307 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-ss 3922 df-pw 4555 |
| This theorem is referenced by: pwexd 5321 pwex 5322 pwel 5323 abssexg 5324 snexALT 5325 xpexg 7690 uniexr 7703 pwexb 7706 fabexgOLD 7879 pw2eng 9007 2pwne 9057 disjen 9058 domss2 9060 ssenen 9075 fineqvlem 9167 tskwe 9865 ween 9948 acni 9958 acnnum 9965 infpwfien 9975 pwdju1 10104 ackbij1b 10151 fictb 10157 fin2i 10208 isfin2-2 10232 ssfin3ds 10243 fin23lem32 10257 fin23lem39 10263 fin23lem41 10265 isfin1-3 10299 fin1a2lem12 10324 canth3 10474 ondomon 10476 canthnum 10562 canthwe 10564 gchxpidm 10582 hashbcval 16932 restid2 17352 prdsplusg 17380 prdsvsca 17382 ismre 17510 isacs1i 17581 sscpwex 17740 fpwipodrs 18464 acsdrscl 18470 opsrval 21969 toponsspwpw 22825 tgdom 22881 distop 22898 fctop 22907 cctop 22909 ppttop 22910 epttop 22912 cldval 22926 ntrfval 22927 clsfval 22928 neifval 23002 neif 23003 neival 23005 neiptoptop 23034 lpfval 23041 restfpw 23082 islocfin 23420 dissnref 23431 kgenval 23438 dfac14lem 23520 qtopval 23598 isfbas 23732 fbssfi 23740 fsubbas 23770 fgval 23773 filssufil 23815 hauspwpwf1 23890 hauspwpwdom 23891 flimfnfcls 23931 tsmsfbas 24031 eltsms 24036 ustval 24106 utopval 24136 madeval 27780 cusgrexilem1 29402 indv 32808 pwrssmgc 32955 sigaex 34079 sigaval 34080 pwsiga 34099 pwldsys 34126 ldgenpisyslem1 34132 omsval 34263 carsgval 34273 coinflipspace 34451 iscvm 35234 cvmsval 35241 ex-sategoelel 35396 altxpexg 35954 hfpw 36161 fnemeet2 36343 fnejoin1 36344 bj-restpw 37068 elrfi 42670 elrfirn 42671 kelac2 43041 enmappwid 43976 rfovd 43977 fsovrfovd 43985 dssmapfv2d 43994 clsk3nimkb 44016 clsneif1o 44080 clsneicnv 44081 clsneikex 44082 clsneinex 44083 neicvgmex 44093 neicvgel1 44095 pwsal 46300 prproropen 47496 stgrvtx 47942 stgriedg 47943 |
| Copyright terms: Public domain | W3C validator |