![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwexg | Structured version Visualization version GIF version |
Description: Power set axiom expressed in class notation, with the sethood requirement as an antecedent. (Contributed by NM, 30-Oct-2003.) |
Ref | Expression |
---|---|
pwexg | ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4617 | . . 3 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
2 | 1 | eleq1d 2819 | . 2 ⊢ (𝑥 = 𝐴 → (𝒫 𝑥 ∈ V ↔ 𝒫 𝐴 ∈ V)) |
3 | vpwex 5376 | . 2 ⊢ 𝒫 𝑥 ∈ V | |
4 | 2, 3 | vtoclg 3557 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 Vcvv 3475 𝒫 cpw 4603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-pow 5364 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-ss 3966 df-pw 4605 |
This theorem is referenced by: pwexd 5378 pwex 5379 pwel 5380 abssexg 5381 snexALT 5382 xpexg 7737 uniexr 7750 pwexb 7753 fabexg 7925 pw2eng 9078 2pwne 9133 disjen 9134 domss2 9136 ssenen 9151 fineqvlem 9262 tskwe 9945 ween 10030 acni 10040 acnnum 10047 infpwfien 10057 pwdju1 10185 ackbij1b 10234 fictb 10240 fin2i 10290 isfin2-2 10314 ssfin3ds 10325 fin23lem32 10339 fin23lem39 10345 fin23lem41 10347 isfin1-3 10381 fin1a2lem12 10406 canth3 10556 ondomon 10558 canthnum 10644 canthwe 10646 gchxpidm 10664 hashbcval 16935 restid2 17376 prdsplusg 17404 prdsvsca 17406 ismre 17534 isacs1i 17601 sscpwex 17762 fpwipodrs 18493 acsdrscl 18499 opsrval 21601 toponsspwpw 22424 tgdom 22481 distop 22498 fctop 22507 cctop 22509 ppttop 22510 epttop 22512 cldval 22527 ntrfval 22528 clsfval 22529 neifval 22603 neif 22604 neival 22606 neiptoptop 22635 lpfval 22642 restfpw 22683 islocfin 23021 dissnref 23032 kgenval 23039 dfac14lem 23121 qtopval 23199 isfbas 23333 fbssfi 23341 fsubbas 23371 fgval 23374 filssufil 23416 hauspwpwf1 23491 hauspwpwdom 23492 flimfnfcls 23532 tsmsfbas 23632 eltsms 23637 ustval 23707 utopval 23737 madeval 27347 cusgrexilem1 28696 pwrssmgc 32170 indv 33010 sigaex 33108 sigaval 33109 pwsiga 33128 pwldsys 33155 ldgenpisyslem1 33161 omsval 33292 carsgval 33302 coinflipspace 33479 iscvm 34250 cvmsval 34257 ex-sategoelel 34412 altxpexg 34950 hfpw 35157 fnemeet2 35252 fnejoin1 35253 bj-restpw 35973 elrfi 41432 elrfirn 41433 kelac2 41807 enmappwid 42751 rfovd 42752 fsovrfovd 42760 dssmapfv2d 42769 clsk3nimkb 42791 clsneif1o 42855 clsneicnv 42856 clsneikex 42857 clsneinex 42858 neicvgmex 42868 neicvgel1 42870 pwsal 45031 prproropen 46176 |
Copyright terms: Public domain | W3C validator |