MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmex Structured version   Visualization version   GIF version

Theorem pmex 8821
Description: The class of all partial functions from one set to another is a set. (Contributed by NM, 15-Nov-2007.)
Assertion
Ref Expression
pmex ((𝐴𝐶𝐵𝐷) → {𝑓 ∣ (Fun 𝑓𝑓 ⊆ (𝐴 × 𝐵))} ∈ V)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hints:   𝐶(𝑓)   𝐷(𝑓)

Proof of Theorem pmex
StepHypRef Expression
1 ancom 461 . . 3 ((Fun 𝑓𝑓 ⊆ (𝐴 × 𝐵)) ↔ (𝑓 ⊆ (𝐴 × 𝐵) ∧ Fun 𝑓))
21abbii 2802 . 2 {𝑓 ∣ (Fun 𝑓𝑓 ⊆ (𝐴 × 𝐵))} = {𝑓 ∣ (𝑓 ⊆ (𝐴 × 𝐵) ∧ Fun 𝑓)}
3 xpexg 7733 . . 3 ((𝐴𝐶𝐵𝐷) → (𝐴 × 𝐵) ∈ V)
4 abssexg 5379 . . 3 ((𝐴 × 𝐵) ∈ V → {𝑓 ∣ (𝑓 ⊆ (𝐴 × 𝐵) ∧ Fun 𝑓)} ∈ V)
53, 4syl 17 . 2 ((𝐴𝐶𝐵𝐷) → {𝑓 ∣ (𝑓 ⊆ (𝐴 × 𝐵) ∧ Fun 𝑓)} ∈ V)
62, 5eqeltrid 2837 1 ((𝐴𝐶𝐵𝐷) → {𝑓 ∣ (Fun 𝑓𝑓 ⊆ (𝐴 × 𝐵))} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  {cab 2709  Vcvv 3474  wss 3947   × cxp 5673  Fun wfun 6534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-opab 5210  df-xp 5681  df-rel 5682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator