MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmex Structured version   Visualization version   GIF version

Theorem pmex 8839
Description: The class of all partial functions from one set to another is a set. (Contributed by NM, 15-Nov-2007.)
Assertion
Ref Expression
pmex ((𝐴𝐶𝐵𝐷) → {𝑓 ∣ (Fun 𝑓𝑓 ⊆ (𝐴 × 𝐵))} ∈ V)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hints:   𝐶(𝑓)   𝐷(𝑓)

Proof of Theorem pmex
StepHypRef Expression
1 ancom 460 . . 3 ((Fun 𝑓𝑓 ⊆ (𝐴 × 𝐵)) ↔ (𝑓 ⊆ (𝐴 × 𝐵) ∧ Fun 𝑓))
21abbii 2801 . 2 {𝑓 ∣ (Fun 𝑓𝑓 ⊆ (𝐴 × 𝐵))} = {𝑓 ∣ (𝑓 ⊆ (𝐴 × 𝐵) ∧ Fun 𝑓)}
3 xpexg 7738 . . 3 ((𝐴𝐶𝐵𝐷) → (𝐴 × 𝐵) ∈ V)
4 abssexg 5349 . . 3 ((𝐴 × 𝐵) ∈ V → {𝑓 ∣ (𝑓 ⊆ (𝐴 × 𝐵) ∧ Fun 𝑓)} ∈ V)
53, 4syl 17 . 2 ((𝐴𝐶𝐵𝐷) → {𝑓 ∣ (𝑓 ⊆ (𝐴 × 𝐵) ∧ Fun 𝑓)} ∈ V)
62, 5eqeltrid 2837 1 ((𝐴𝐶𝐵𝐷) → {𝑓 ∣ (Fun 𝑓𝑓 ⊆ (𝐴 × 𝐵))} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  {cab 2712  Vcvv 3457  wss 3924   × cxp 5649  Fun wfun 6521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-opab 5179  df-xp 5657  df-rel 5658
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator