Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pmex | Structured version Visualization version GIF version |
Description: The class of all partial functions from one set to another is a set. (Contributed by NM, 15-Nov-2007.) |
Ref | Expression |
---|---|
pmex | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐴 × 𝐵))} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 460 | . . 3 ⊢ ((Fun 𝑓 ∧ 𝑓 ⊆ (𝐴 × 𝐵)) ↔ (𝑓 ⊆ (𝐴 × 𝐵) ∧ Fun 𝑓)) | |
2 | 1 | abbii 2809 | . 2 ⊢ {𝑓 ∣ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐴 × 𝐵))} = {𝑓 ∣ (𝑓 ⊆ (𝐴 × 𝐵) ∧ Fun 𝑓)} |
3 | xpexg 7578 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 × 𝐵) ∈ V) | |
4 | abssexg 5300 | . . 3 ⊢ ((𝐴 × 𝐵) ∈ V → {𝑓 ∣ (𝑓 ⊆ (𝐴 × 𝐵) ∧ Fun 𝑓)} ∈ V) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ (𝑓 ⊆ (𝐴 × 𝐵) ∧ Fun 𝑓)} ∈ V) |
6 | 2, 5 | eqeltrid 2843 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∣ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐴 × 𝐵))} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 {cab 2715 Vcvv 3422 ⊆ wss 3883 × cxp 5578 Fun wfun 6412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-opab 5133 df-xp 5586 df-rel 5587 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |