| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwel | Structured version Visualization version GIF version | ||
| Description: Quantitative version of pwexg 5314: the powerset of an element of a class is an element of the double powerclass of the union of that class. Exercise 10 of [Enderton] p. 26. (Contributed by NM, 13-Jan-2007.) Remove use of ax-nul 5242 and ax-pr 5368 and shorten proof. (Revised by BJ, 13-Apr-2024.) |
| Ref | Expression |
|---|---|
| pwel | ⊢ (𝐴 ∈ 𝐵 → 𝒫 𝐴 ∈ 𝒫 𝒫 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg 5314 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝒫 𝐴 ∈ V) | |
| 2 | elssuni 4887 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ⊆ ∪ 𝐵) | |
| 3 | 2 | sspwd 4560 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 ∪ 𝐵) |
| 4 | 1, 3 | elpwd 4553 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝒫 𝐴 ∈ 𝒫 𝒫 ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 𝒫 cpw 4547 ∪ cuni 4856 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-pow 5301 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-pw 4549 df-uni 4857 |
| This theorem is referenced by: bj-unirel 37093 |
| Copyright terms: Public domain | W3C validator |