![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwel | Structured version Visualization version GIF version |
Description: Quantitative version of pwexg 5376: the powerset of an element of a class is an element of the double powerclass of the union of that class. Exercise 10 of [Enderton] p. 26. (Contributed by NM, 13-Jan-2007.) Remove use of ax-nul 5306 and ax-pr 5427 and shorten proof. (Revised by BJ, 13-Apr-2024.) |
Ref | Expression |
---|---|
pwel | ⊢ (𝐴 ∈ 𝐵 → 𝒫 𝐴 ∈ 𝒫 𝒫 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 5376 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝒫 𝐴 ∈ V) | |
2 | elssuni 4941 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ⊆ ∪ 𝐵) | |
3 | 2 | sspwd 4615 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝒫 𝐴 ⊆ 𝒫 ∪ 𝐵) |
4 | 1, 3 | elpwd 4608 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝒫 𝐴 ∈ 𝒫 𝒫 ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Vcvv 3473 𝒫 cpw 4602 ∪ cuni 4908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-pow 5363 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-in 3955 df-ss 3965 df-pw 4604 df-uni 4909 |
This theorem is referenced by: bj-unirel 36248 |
Copyright terms: Public domain | W3C validator |