MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwel Structured version   Visualization version   GIF version

Theorem pwel 5299
Description: Quantitative version of pwexg 5296: the powerset of an element of a class is an element of the double powerclass of the union of that class. Exercise 10 of [Enderton] p. 26. (Contributed by NM, 13-Jan-2007.) Remove use of ax-nul 5225 and ax-pr 5347 and shorten proof. (Revised by BJ, 13-Apr-2024.)
Assertion
Ref Expression
pwel (𝐴𝐵 → 𝒫 𝐴 ∈ 𝒫 𝒫 𝐵)

Proof of Theorem pwel
StepHypRef Expression
1 pwexg 5296 . 2 (𝐴𝐵 → 𝒫 𝐴 ∈ V)
2 elssuni 4868 . . 3 (𝐴𝐵𝐴 𝐵)
32sspwd 4545 . 2 (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
41, 3elpwd 4538 1 (𝐴𝐵 → 𝒫 𝐴 ∈ 𝒫 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3422  𝒫 cpw 4530   cuni 4836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-pow 5283
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-pw 4532  df-uni 4837
This theorem is referenced by:  bj-unirel  35151
  Copyright terms: Public domain W3C validator