Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabssf Structured version   Visualization version   GIF version

Theorem rabssf 44296
Description: Restricted class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
rabssf.1 𝑥𝐵
Assertion
Ref Expression
rabssf ({𝑥𝐴𝜑} ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝜑𝑥𝐵))

Proof of Theorem rabssf
StepHypRef Expression
1 df-rab 3425 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
21sseq1i 4002 . 2 ({𝑥𝐴𝜑} ⊆ 𝐵 ↔ {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐵)
3 rabssf.1 . . 3 𝑥𝐵
43abssf 44289 . 2 ({𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐵 ↔ ∀𝑥((𝑥𝐴𝜑) → 𝑥𝐵))
5 impexp 450 . . . 4 (((𝑥𝐴𝜑) → 𝑥𝐵) ↔ (𝑥𝐴 → (𝜑𝑥𝐵)))
65albii 1813 . . 3 (∀𝑥((𝑥𝐴𝜑) → 𝑥𝐵) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝑥𝐵)))
7 df-ral 3054 . . 3 (∀𝑥𝐴 (𝜑𝑥𝐵) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝑥𝐵)))
86, 7bitr4i 278 . 2 (∀𝑥((𝑥𝐴𝜑) → 𝑥𝐵) ↔ ∀𝑥𝐴 (𝜑𝑥𝐵))
92, 4, 83bitri 297 1 ({𝑥𝐴𝜑} ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝜑𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1531  wcel 2098  {cab 2701  wnfc 2875  wral 3053  {crab 3424  wss 3940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ral 3054  df-rab 3425  df-v 3468  df-in 3947  df-ss 3957
This theorem is referenced by:  rabssd  44319  supminfxr2  44664  preimageiingt  45921  preimaleiinlt  45922  smfmullem4  45995
  Copyright terms: Public domain W3C validator