Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabssf Structured version   Visualization version   GIF version

Theorem rabssf 45110
Description: Restricted class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypothesis
Ref Expression
rabssf.1 𝑥𝐵
Assertion
Ref Expression
rabssf ({𝑥𝐴𝜑} ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝜑𝑥𝐵))

Proof of Theorem rabssf
StepHypRef Expression
1 df-rab 3421 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
21sseq1i 3992 . 2 ({𝑥𝐴𝜑} ⊆ 𝐵 ↔ {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐵)
3 rabssf.1 . . 3 𝑥𝐵
43abssf 45103 . 2 ({𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐵 ↔ ∀𝑥((𝑥𝐴𝜑) → 𝑥𝐵))
5 impexp 450 . . . 4 (((𝑥𝐴𝜑) → 𝑥𝐵) ↔ (𝑥𝐴 → (𝜑𝑥𝐵)))
65albii 1819 . . 3 (∀𝑥((𝑥𝐴𝜑) → 𝑥𝐵) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝑥𝐵)))
7 df-ral 3053 . . 3 (∀𝑥𝐴 (𝜑𝑥𝐵) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝑥𝐵)))
86, 7bitr4i 278 . 2 (∀𝑥((𝑥𝐴𝜑) → 𝑥𝐵) ↔ ∀𝑥𝐴 (𝜑𝑥𝐵))
92, 4, 83bitri 297 1 ({𝑥𝐴𝜑} ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝜑𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wcel 2109  {cab 2714  wnfc 2884  wral 3052  {crab 3420  wss 3931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rab 3421  df-ss 3948
This theorem is referenced by:  rabssd  45133  supminfxr2  45463  preimageiingt  46716  preimaleiinlt  46717  smfmullem4  46790
  Copyright terms: Public domain W3C validator