Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliinid Structured version   Visualization version   GIF version

Theorem eliinid 40104
Description: Membership in an indexed intersection implies membership in any intersected set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Assertion
Ref Expression
eliinid ((𝐴 𝑥𝐵 𝐶𝑥𝐵) → 𝐴𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem eliinid
StepHypRef Expression
1 simpl 476 . . 3 ((𝐴 𝑥𝐵 𝐶𝑥𝐵) → 𝐴 𝑥𝐵 𝐶)
2 eliin 4747 . . . 4 (𝐴 𝑥𝐵 𝐶 → (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶))
32adantr 474 . . 3 ((𝐴 𝑥𝐵 𝐶𝑥𝐵) → (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶))
41, 3mpbid 224 . 2 ((𝐴 𝑥𝐵 𝐶𝑥𝐵) → ∀𝑥𝐵 𝐴𝐶)
5 rspa 3139 . 2 ((∀𝑥𝐵 𝐴𝐶𝑥𝐵) → 𝐴𝐶)
64, 5sylancom 582 1 ((𝐴 𝑥𝐵 𝐶𝑥𝐵) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wcel 2164  wral 3117   ciin 4743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-ext 2803
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-v 3416  df-iin 4745
This theorem is referenced by:  iinssiin  40121  fnlimfvre  40695  smflimlem2  41768  smflimmpt  41804  smfsuplem1  41805  smfsupmpt  41809  smfsupxr  41810  smfinflem  41811  smfinfmpt  41813  smflimsuplem4  41817  smflimsupmpt  41823  smfliminfmpt  41826
  Copyright terms: Public domain W3C validator