![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eliinid | Structured version Visualization version GIF version |
Description: Membership in an indexed intersection implies membership in any intersected set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
eliinid | ⊢ ((𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶) | |
2 | eliin 5020 | . . . 4 ⊢ (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) | |
3 | 2 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ 𝑥 ∈ 𝐵) → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
4 | 1, 3 | mpbid 232 | . 2 ⊢ ((𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ 𝑥 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) |
5 | rspa 3254 | . 2 ⊢ ((∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝐶) | |
6 | 4, 5 | sylancom 587 | 1 ⊢ ((𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 ∩ ciin 5016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-iin 5018 |
This theorem is referenced by: iinssiin 45031 fnlimfvre 45595 smflimlem2 46693 smflimmpt 46731 smfsuplem1 46732 smfsupmpt 46736 smfsupxr 46737 smfinflem 46738 smfinfmpt 46740 smflimsuplem4 46744 smflimsupmpt 46750 smfliminfmpt 46753 fsupdm 46763 finfdm 46767 |
Copyright terms: Public domain | W3C validator |