Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliinid Structured version   Visualization version   GIF version

Theorem eliinid 45105
Description: Membership in an indexed intersection implies membership in any intersected set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Assertion
Ref Expression
eliinid ((𝐴 𝑥𝐵 𝐶𝑥𝐵) → 𝐴𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem eliinid
StepHypRef Expression
1 simpl 482 . . 3 ((𝐴 𝑥𝐵 𝐶𝑥𝐵) → 𝐴 𝑥𝐵 𝐶)
2 eliin 4960 . . . 4 (𝐴 𝑥𝐵 𝐶 → (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶))
32adantr 480 . . 3 ((𝐴 𝑥𝐵 𝐶𝑥𝐵) → (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶))
41, 3mpbid 232 . 2 ((𝐴 𝑥𝐵 𝐶𝑥𝐵) → ∀𝑥𝐵 𝐴𝐶)
5 rspa 3226 . 2 ((∀𝑥𝐵 𝐴𝐶𝑥𝐵) → 𝐴𝐶)
64, 5sylancom 588 1 ((𝐴 𝑥𝐵 𝐶𝑥𝐵) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wral 3044   ciin 4956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-iin 4958
This theorem is referenced by:  iinssiin  45123  fnlimfvre  45672  smflimlem2  46770  smflimmpt  46808  smfsuplem1  46809  smfsupmpt  46813  smfsupxr  46814  smfinflem  46815  smfinfmpt  46817  smflimsuplem4  46821  smflimsupmpt  46827  smfliminfmpt  46830  fsupdm  46840  finfdm  46844
  Copyright terms: Public domain W3C validator