| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eliinid | Structured version Visualization version GIF version | ||
| Description: Membership in an indexed intersection implies membership in any intersected set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| eliinid | ⊢ ((𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶) | |
| 2 | eliin 4960 | . . . 4 ⊢ (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ 𝑥 ∈ 𝐵) → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
| 4 | 1, 3 | mpbid 232 | . 2 ⊢ ((𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ 𝑥 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) |
| 5 | rspa 3226 | . 2 ⊢ ((∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝐶) | |
| 6 | 4, 5 | sylancom 588 | 1 ⊢ ((𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∩ ciin 4956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-iin 4958 |
| This theorem is referenced by: iinssiin 45123 fnlimfvre 45672 smflimlem2 46770 smflimmpt 46808 smfsuplem1 46809 smfsupmpt 46813 smfsupxr 46814 smfinflem 46815 smfinfmpt 46817 smflimsuplem4 46821 smflimsupmpt 46827 smfliminfmpt 46830 fsupdm 46840 finfdm 46844 |
| Copyright terms: Public domain | W3C validator |