![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eliinid | Structured version Visualization version GIF version |
Description: Membership in an indexed intersection implies membership in any intersected set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
eliinid | ⊢ ((𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 476 | . . 3 ⊢ ((𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶) | |
2 | eliin 4747 | . . . 4 ⊢ (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) | |
3 | 2 | adantr 474 | . . 3 ⊢ ((𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ 𝑥 ∈ 𝐵) → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
4 | 1, 3 | mpbid 224 | . 2 ⊢ ((𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ 𝑥 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) |
5 | rspa 3139 | . 2 ⊢ ((∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝐶) | |
6 | 4, 5 | sylancom 582 | 1 ⊢ ((𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∈ wcel 2164 ∀wral 3117 ∩ ciin 4743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-v 3416 df-iin 4745 |
This theorem is referenced by: iinssiin 40121 fnlimfvre 40695 smflimlem2 41768 smflimmpt 41804 smfsuplem1 41805 smfsupmpt 41809 smfsupxr 41810 smfinflem 41811 smfinfmpt 41813 smflimsuplem4 41817 smflimsupmpt 41823 smfliminfmpt 41826 |
Copyright terms: Public domain | W3C validator |