| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eliinid | Structured version Visualization version GIF version | ||
| Description: Membership in an indexed intersection implies membership in any intersected set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| eliinid | ⊢ ((𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶) | |
| 2 | eliin 4948 | . . . 4 ⊢ (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ 𝑥 ∈ 𝐵) → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
| 4 | 1, 3 | mpbid 232 | . 2 ⊢ ((𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ 𝑥 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) |
| 5 | rspa 3222 | . 2 ⊢ ((∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝐶) | |
| 6 | 4, 5 | sylancom 588 | 1 ⊢ ((𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 ∀wral 3048 ∩ ciin 4944 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-iin 4946 |
| This theorem is referenced by: iinssiin 45289 fnlimfvre 45834 smflimlem2 46932 smflimmpt 46970 smfsuplem1 46971 smfsupmpt 46975 smfsupxr 46976 smfinflem 46977 smfinfmpt 46979 smflimsuplem4 46983 smflimsupmpt 46989 smfliminfmpt 46992 fsupdm 47002 finfdm 47006 |
| Copyright terms: Public domain | W3C validator |