Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliinid Structured version   Visualization version   GIF version

Theorem eliinid 45271
Description: Membership in an indexed intersection implies membership in any intersected set. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Assertion
Ref Expression
eliinid ((𝐴 𝑥𝐵 𝐶𝑥𝐵) → 𝐴𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem eliinid
StepHypRef Expression
1 simpl 482 . . 3 ((𝐴 𝑥𝐵 𝐶𝑥𝐵) → 𝐴 𝑥𝐵 𝐶)
2 eliin 4948 . . . 4 (𝐴 𝑥𝐵 𝐶 → (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶))
32adantr 480 . . 3 ((𝐴 𝑥𝐵 𝐶𝑥𝐵) → (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶))
41, 3mpbid 232 . 2 ((𝐴 𝑥𝐵 𝐶𝑥𝐵) → ∀𝑥𝐵 𝐴𝐶)
5 rspa 3222 . 2 ((∀𝑥𝐵 𝐴𝐶𝑥𝐵) → 𝐴𝐶)
64, 5sylancom 588 1 ((𝐴 𝑥𝐵 𝐶𝑥𝐵) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2113  wral 3048   ciin 4944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-iin 4946
This theorem is referenced by:  iinssiin  45289  fnlimfvre  45834  smflimlem2  46932  smflimmpt  46970  smfsuplem1  46971  smfsupmpt  46975  smfsupxr  46976  smfinflem  46977  smfinfmpt  46979  smflimsuplem4  46983  smflimsupmpt  46989  smfliminfmpt  46992  fsupdm  47002  finfdm  47006
  Copyright terms: Public domain W3C validator