MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2cpmfo Structured version   Visualization version   GIF version

Theorem m2cpmfo 22645
Description: The matrix transformation is a function from the matrices onto the constant polynomial matrices. (Contributed by AV, 19-Nov-2019.) (Proof shortened by AV, 28-Nov-2019.)
Hypotheses
Ref Expression
m2cpmfo.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
m2cpmfo.t 𝑇 = (𝑁 matToPolyMat 𝑅)
m2cpmfo.a 𝐴 = (𝑁 Mat 𝑅)
m2cpmfo.k 𝐾 = (Base‘𝐴)
Assertion
Ref Expression
m2cpmfo ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐾onto𝑆)

Proof of Theorem m2cpmfo
Dummy variables 𝑐 𝑚 𝑥 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 m2cpmfo.s . . 3 𝑆 = (𝑁 ConstPolyMat 𝑅)
2 m2cpmfo.t . . 3 𝑇 = (𝑁 matToPolyMat 𝑅)
3 m2cpmfo.a . . 3 𝐴 = (𝑁 Mat 𝑅)
4 m2cpmfo.k . . 3 𝐾 = (Base‘𝐴)
51, 2, 3, 4m2cpmf 22631 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐾𝑆)
6 eqid 2727 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
7 simplll 774 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) ∧ 𝑚𝑆) → 𝑁 ∈ Fin)
8 simpllr 775 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) ∧ 𝑚𝑆) → 𝑅 ∈ Ring)
9 eqid 2727 . . . . . . . . 9 (𝑁 Mat (Poly1𝑅)) = (𝑁 Mat (Poly1𝑅))
10 eqid 2727 . . . . . . . . 9 (Base‘(Poly1𝑅)) = (Base‘(Poly1𝑅))
11 eqid 2727 . . . . . . . . 9 (Base‘(𝑁 Mat (Poly1𝑅))) = (Base‘(𝑁 Mat (Poly1𝑅)))
12 simp2 1135 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) ∧ 𝑚𝑆) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
13 simp3 1136 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) ∧ 𝑚𝑆) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
14 eqid 2727 . . . . . . . . . . . 12 (Poly1𝑅) = (Poly1𝑅)
151, 14, 9, 11cpmatpmat 22599 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑚𝑆) → 𝑚 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
1615ad4ant124 1171 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) ∧ 𝑚𝑆) → 𝑚 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
17163ad2ant1 1131 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) ∧ 𝑚𝑆) ∧ 𝑖𝑁𝑗𝑁) → 𝑚 ∈ (Base‘(𝑁 Mat (Poly1𝑅))))
189, 10, 11, 12, 13, 17matecld 22315 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) ∧ 𝑚𝑆) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑚𝑗) ∈ (Base‘(Poly1𝑅)))
19 0nn0 12509 . . . . . . . 8 0 ∈ ℕ0
20 eqid 2727 . . . . . . . . 9 (coe1‘(𝑖𝑚𝑗)) = (coe1‘(𝑖𝑚𝑗))
2120, 10, 14, 6coe1fvalcl 22118 . . . . . . . 8 (((𝑖𝑚𝑗) ∈ (Base‘(Poly1𝑅)) ∧ 0 ∈ ℕ0) → ((coe1‘(𝑖𝑚𝑗))‘0) ∈ (Base‘𝑅))
2218, 19, 21sylancl 585 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) ∧ 𝑚𝑆) ∧ 𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑚𝑗))‘0) ∈ (Base‘𝑅))
233, 6, 4, 7, 8, 22matbas2d 22312 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) ∧ 𝑚𝑆) → (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0)) ∈ 𝐾)
2423fmpttd 7119 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) → (𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0))):𝑆𝐾)
25 simpr 484 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) → 𝑥𝑆)
2624, 25ffvelcdmd 7089 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) → ((𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0)))‘𝑥) ∈ 𝐾)
27 fveq2 6891 . . . . . 6 (𝑐 = ((𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0)))‘𝑥) → (𝑇𝑐) = (𝑇‘((𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0)))‘𝑥)))
2827eqeq2d 2738 . . . . 5 (𝑐 = ((𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0)))‘𝑥) → (𝑥 = (𝑇𝑐) ↔ 𝑥 = (𝑇‘((𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0)))‘𝑥))))
2928adantl 481 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) ∧ 𝑐 = ((𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0)))‘𝑥)) → (𝑥 = (𝑇𝑐) ↔ 𝑥 = (𝑇‘((𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0)))‘𝑥))))
30 eqid 2727 . . . . . . . . . . . 12 (𝑁 cPolyMatToMat 𝑅) = (𝑁 cPolyMatToMat 𝑅)
3130, 1cpm2mfval 22638 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑁 cPolyMatToMat 𝑅) = (𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0))))
3231fveq1d 6893 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑁 cPolyMatToMat 𝑅)‘𝑥) = ((𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0)))‘𝑥))
33323adant3 1130 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝑆) → ((𝑁 cPolyMatToMat 𝑅)‘𝑥) = ((𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0)))‘𝑥))
3433eqcomd 2733 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝑆) → ((𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0)))‘𝑥) = ((𝑁 cPolyMatToMat 𝑅)‘𝑥))
3534fveq2d 6895 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝑆) → (𝑇‘((𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0)))‘𝑥)) = (𝑇‘((𝑁 cPolyMatToMat 𝑅)‘𝑥)))
361, 30, 2m2cpminvid2 22644 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝑆) → (𝑇‘((𝑁 cPolyMatToMat 𝑅)‘𝑥)) = 𝑥)
3735, 36eqtrd 2767 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝑆) → (𝑇‘((𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0)))‘𝑥)) = 𝑥)
38373expa 1116 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) → (𝑇‘((𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0)))‘𝑥)) = 𝑥)
3938eqcomd 2733 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) → 𝑥 = (𝑇‘((𝑚𝑆 ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((coe1‘(𝑖𝑚𝑗))‘0)))‘𝑥)))
4026, 29, 39rspcedvd 3609 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) → ∃𝑐𝐾 𝑥 = (𝑇𝑐))
4140ralrimiva 3141 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝑆𝑐𝐾 𝑥 = (𝑇𝑐))
42 dffo3 7106 . 2 (𝑇:𝐾onto𝑆 ↔ (𝑇:𝐾𝑆 ∧ ∀𝑥𝑆𝑐𝐾 𝑥 = (𝑇𝑐)))
435, 41, 42sylanbrc 582 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇:𝐾onto𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3056  wrex 3065  cmpt 5225  wf 6538  ontowfo 6540  cfv 6542  (class class class)co 7414  cmpo 7416  Fincfn 8955  0cc0 11130  0cn0 12494  Basecbs 17171  Ringcrg 20164  Poly1cpl1 22083  coe1cco1 22084   Mat cmat 22294   ConstPolyMat ccpmat 22592   matToPolyMat cmat2pmat 22593   cPolyMatToMat ccpmat2mat 22594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-ofr 7680  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8838  df-pm 8839  df-ixp 8908  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-fsupp 9378  df-sup 9457  df-oi 9525  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-z 12581  df-dec 12700  df-uz 12845  df-fz 13509  df-fzo 13652  df-seq 13991  df-hash 14314  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-sca 17240  df-vsca 17241  df-ip 17242  df-tset 17243  df-ple 17244  df-ds 17246  df-hom 17248  df-cco 17249  df-0g 17414  df-gsum 17415  df-prds 17420  df-pws 17422  df-mre 17557  df-mrc 17558  df-acs 17560  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-mhm 18731  df-submnd 18732  df-grp 18884  df-minusg 18885  df-sbg 18886  df-mulg 19015  df-subg 19069  df-ghm 19159  df-cntz 19259  df-cmn 19728  df-abl 19729  df-mgp 20066  df-rng 20084  df-ur 20113  df-srg 20118  df-ring 20166  df-subrng 20472  df-subrg 20497  df-lmod 20734  df-lss 20805  df-sra 21047  df-rgmod 21048  df-dsmm 21653  df-frlm 21668  df-ascl 21776  df-psr 21829  df-mvr 21830  df-mpl 21831  df-opsr 21833  df-psr1 22086  df-vr1 22087  df-ply1 22088  df-coe1 22089  df-mat 22295  df-cpmat 22595  df-mat2pmat 22596  df-cpmat2mat 22597
This theorem is referenced by:  m2cpmf1o  22646
  Copyright terms: Public domain W3C validator