MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnflf Structured version   Visualization version   GIF version

Theorem cnflf 22607
Description: A function is continuous iff it respects filter limits. (Contributed by Jeff Hankins, 6-Sep-2009.) (Revised by Stefan O'Rear, 7-Aug-2015.)
Assertion
Ref Expression
cnflf ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
Distinct variable groups:   𝑥,𝑓,𝑋   𝑓,𝑌,𝑥   𝑓,𝐹,𝑥   𝑓,𝐽,𝑥   𝑓,𝐾,𝑥

Proof of Theorem cnflf
StepHypRef Expression
1 cncnp 21885 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
2 simplr 768 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝑋) → 𝐹:𝑋𝑌)
3 cnpflf 22606 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))))
43ad4ant124 1170 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))))
52, 4mpbirand 706 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
65ralbidva 3161 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑥𝑋𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
7 eqid 2798 . . . . . . . . . . . 12 𝐽 = 𝐽
87flimelbas 22573 . . . . . . . . . . 11 (𝑥 ∈ (𝐽 fLim 𝑓) → 𝑥 𝐽)
9 toponuni 21519 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
109ad2antrr 725 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → 𝑋 = 𝐽)
1110eleq2d 2875 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝑥𝑋𝑥 𝐽))
128, 11syl5ibr 249 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝑥 ∈ (𝐽 fLim 𝑓) → 𝑥𝑋))
1312pm4.71rd 566 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝑥 ∈ (𝐽 fLim 𝑓) ↔ (𝑥𝑋𝑥 ∈ (𝐽 fLim 𝑓))))
1413imbi1d 345 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) ↔ ((𝑥𝑋𝑥 ∈ (𝐽 fLim 𝑓)) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
15 impexp 454 . . . . . . . 8 (((𝑥𝑋𝑥 ∈ (𝐽 fLim 𝑓)) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) ↔ (𝑥𝑋 → (𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
1614, 15syl6bb 290 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) ↔ (𝑥𝑋 → (𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))))
1716ralbidv2 3160 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹) ↔ ∀𝑥𝑋 (𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
1817ralbidv 3162 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹) ↔ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥𝑋 (𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
19 ralcom 3307 . . . . 5 (∀𝑓 ∈ (Fil‘𝑋)∀𝑥𝑋 (𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) ↔ ∀𝑥𝑋𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))
2018, 19syl6bb 290 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹) ↔ ∀𝑥𝑋𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
216, 20bitr4d 285 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))
2221pm5.32da 582 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
231, 22bitrd 282 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106   cuni 4800  wf 6320  cfv 6324  (class class class)co 7135  TopOnctopon 21515   Cn ccn 21829   CnP ccnp 21830  Filcfil 22450   fLim cflim 22539   fLimf cflf 22540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-map 8391  df-topgen 16709  df-fbas 20088  df-fg 20089  df-top 21499  df-topon 21516  df-ntr 21625  df-nei 21703  df-cn 21832  df-cnp 21833  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545
This theorem is referenced by:  cnflf2  22608  flfcntr  22648  fmcncfil  31284
  Copyright terms: Public domain W3C validator