MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnflf Structured version   Visualization version   GIF version

Theorem cnflf 23945
Description: A function is continuous iff it respects filter limits. (Contributed by Jeff Hankins, 6-Sep-2009.) (Revised by Stefan O'Rear, 7-Aug-2015.)
Assertion
Ref Expression
cnflf ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
Distinct variable groups:   𝑥,𝑓,𝑋   𝑓,𝑌,𝑥   𝑓,𝐹,𝑥   𝑓,𝐽,𝑥   𝑓,𝐾,𝑥

Proof of Theorem cnflf
StepHypRef Expression
1 cncnp 23223 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
2 simplr 768 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝑋) → 𝐹:𝑋𝑌)
3 cnpflf 23944 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))))
43ad4ant124 1174 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))))
52, 4mpbirand 707 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
65ralbidva 3162 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑥𝑋𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
7 eqid 2736 . . . . . . . . . . . 12 𝐽 = 𝐽
87flimelbas 23911 . . . . . . . . . . 11 (𝑥 ∈ (𝐽 fLim 𝑓) → 𝑥 𝐽)
9 toponuni 22857 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
109ad2antrr 726 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → 𝑋 = 𝐽)
1110eleq2d 2821 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝑥𝑋𝑥 𝐽))
128, 11imbitrrid 246 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝑥 ∈ (𝐽 fLim 𝑓) → 𝑥𝑋))
1312pm4.71rd 562 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝑥 ∈ (𝐽 fLim 𝑓) ↔ (𝑥𝑋𝑥 ∈ (𝐽 fLim 𝑓))))
1413imbi1d 341 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) ↔ ((𝑥𝑋𝑥 ∈ (𝐽 fLim 𝑓)) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
15 impexp 450 . . . . . . . 8 (((𝑥𝑋𝑥 ∈ (𝐽 fLim 𝑓)) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) ↔ (𝑥𝑋 → (𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
1614, 15bitrdi 287 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) ↔ (𝑥𝑋 → (𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))))
1716ralbidv2 3160 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹) ↔ ∀𝑥𝑋 (𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
1817ralbidv 3164 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹) ↔ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥𝑋 (𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
19 ralcom 3274 . . . . 5 (∀𝑓 ∈ (Fil‘𝑋)∀𝑥𝑋 (𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) ↔ ∀𝑥𝑋𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))
2018, 19bitrdi 287 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹) ↔ ∀𝑥𝑋𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
216, 20bitr4d 282 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))
2221pm5.32da 579 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
231, 22bitrd 279 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052   cuni 4888  wf 6532  cfv 6536  (class class class)co 7410  TopOnctopon 22853   Cn ccn 23167   CnP ccnp 23168  Filcfil 23788   fLim cflim 23877   fLimf cflf 23878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-map 8847  df-topgen 17462  df-fbas 21317  df-fg 21318  df-top 22837  df-topon 22854  df-ntr 22963  df-nei 23041  df-cn 23170  df-cnp 23171  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883
This theorem is referenced by:  cnflf2  23946  flfcntr  23986  fmcncfil  33967
  Copyright terms: Public domain W3C validator