Proof of Theorem cnflf
| Step | Hyp | Ref
| Expression |
| 1 | | cncnp 23223 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))) |
| 2 | | simplr 768 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝑋) → 𝐹:𝑋⟶𝑌) |
| 3 | | cnpflf 23944 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑥 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))) |
| 4 | 3 | ad4ant124 1174 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))) |
| 5 | 2, 4 | mpbirand 707 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))) |
| 6 | 5 | ralbidva 3162 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑥 ∈ 𝑋 ∀𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))) |
| 7 | | eqid 2736 |
. . . . . . . . . . . 12
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 8 | 7 | flimelbas 23911 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐽 fLim 𝑓) → 𝑥 ∈ ∪ 𝐽) |
| 9 | | toponuni 22857 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 10 | 9 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → 𝑋 = ∪ 𝐽) |
| 11 | 10 | eleq2d 2821 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (𝑥 ∈ 𝑋 ↔ 𝑥 ∈ ∪ 𝐽)) |
| 12 | 8, 11 | imbitrrid 246 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (𝑥 ∈ (𝐽 fLim 𝑓) → 𝑥 ∈ 𝑋)) |
| 13 | 12 | pm4.71rd 562 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (𝑥 ∈ (𝐽 fLim 𝑓) ↔ (𝑥 ∈ 𝑋 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)))) |
| 14 | 13 | imbi1d 341 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → ((𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) ↔ ((𝑥 ∈ 𝑋 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)) → (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))) |
| 15 | | impexp 450 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝑋 ∧ 𝑥 ∈ (𝐽 fLim 𝑓)) → (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) ↔ (𝑥 ∈ 𝑋 → (𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))) |
| 16 | 14, 15 | bitrdi 287 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → ((𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) ↔ (𝑥 ∈ 𝑋 → (𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))) |
| 17 | 16 | ralbidv2 3160 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹) ↔ ∀𝑥 ∈ 𝑋 (𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))) |
| 18 | 17 | ralbidv 3164 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹) ↔ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ 𝑋 (𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))) |
| 19 | | ralcom 3274 |
. . . . 5
⊢
(∀𝑓 ∈
(Fil‘𝑋)∀𝑥 ∈ 𝑋 (𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)) ↔ ∀𝑥 ∈ 𝑋 ∀𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))) |
| 20 | 18, 19 | bitrdi 287 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹) ↔ ∀𝑥 ∈ 𝑋 ∀𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fLim 𝑓) → (𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))) |
| 21 | 6, 20 | bitr4d 282 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))) |
| 22 | 21 | pm5.32da 579 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))) |
| 23 | 1, 22 | bitrd 279 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))) |