MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcn Structured version   Visualization version   GIF version

Theorem metcn 22568
Description: Two ways to say a mapping from metric 𝐶 to metric 𝐷 is continuous. Theorem 10.1 of [Munkres] p. 127. The second biconditional argument says that for every positive "epsilon" 𝑦 there is a positive "delta" 𝑧 such that a distance less than delta in 𝐶 maps to a distance less than epsilon in 𝐷. (Contributed by NM, 15-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpen‘𝐶)
metcn.4 𝐾 = (MetOpen‘𝐷)
Assertion
Ref Expression
metcn ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝐹𝑥)𝐷(𝐹𝑤)) < 𝑦))))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐹   𝑤,𝐽,𝑥,𝑦,𝑧   𝑤,𝐾,𝑥,𝑦,𝑧   𝑤,𝑋,𝑥,𝑦,𝑧   𝑤,𝑌,𝑥,𝑦,𝑧   𝑤,𝐶,𝑥,𝑦,𝑧   𝑤,𝐷,𝑥,𝑦,𝑧

Proof of Theorem metcn
StepHypRef Expression
1 metcn.2 . . . 4 𝐽 = (MetOpen‘𝐶)
21mopntopon 22464 . . 3 (𝐶 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
3 metcn.4 . . . 4 𝐾 = (MetOpen‘𝐷)
43mopntopon 22464 . . 3 (𝐷 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌))
5 cncnp 21305 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
62, 4, 5syl2an 583 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
71, 3metcnp 22566 . . . . . . 7 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝐹𝑥)𝐷(𝐹𝑤)) < 𝑦))))
873expa 1111 . . . . . 6 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝐹𝑥)𝐷(𝐹𝑤)) < 𝑦))))
98adantlr 694 . . . . 5 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝐹𝑥)𝐷(𝐹𝑤)) < 𝑦))))
10 simplr 752 . . . . . 6 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝑋) → 𝐹:𝑋𝑌)
1110biantrurd 522 . . . . 5 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝑋) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝐹𝑥)𝐷(𝐹𝑤)) < 𝑦) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝐹𝑥)𝐷(𝐹𝑤)) < 𝑦))))
129, 11bitr4d 271 . . . 4 ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝐹𝑥)𝐷(𝐹𝑤)) < 𝑦)))
1312ralbidva 3134 . . 3 (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑥𝑋𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝐹𝑥)𝐷(𝐹𝑤)) < 𝑦)))
1413pm5.32da 568 . 2 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝐹𝑥)𝐷(𝐹𝑤)) < 𝑦))))
156, 14bitrd 268 1 ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝐹𝑥)𝐷(𝐹𝑤)) < 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  wrex 3062   class class class wbr 4786  wf 6027  cfv 6031  (class class class)co 6793   < clt 10276  +crp 12035  ∞Metcxmt 19946  MetOpencmopn 19951  TopOnctopon 20935   Cn ccn 21249   CnP ccnp 21250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-n0 11495  df-z 11580  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-topgen 16312  df-psmet 19953  df-xmet 19954  df-bl 19956  df-mopn 19957  df-top 20919  df-topon 20936  df-bases 20971  df-cn 21252  df-cnp 21253
This theorem is referenced by:  nrginvrcn  22716  nghmcn  22769  metdscn  22879  divcn  22891  cncfmet  22931  nmcvcn  27890  blocni  28000  hhcno  29103  hhcnf  29104  fmcncfil  30317  heicant  33777
  Copyright terms: Public domain W3C validator