MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcn Structured version   Visualization version   GIF version

Theorem metcn 23922
Description: Two ways to say a mapping from metric 𝐢 to metric 𝐷 is continuous. Theorem 10.1 of [Munkres] p. 127. The second biconditional argument says that for every positive "epsilon" 𝑦 there is a positive "delta" 𝑧 such that a distance less than delta in 𝐢 maps to a distance less than epsilon in 𝐷. (Contributed by NM, 15-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
metcn.2 𝐽 = (MetOpenβ€˜πΆ)
metcn.4 𝐾 = (MetOpenβ€˜π·)
Assertion
Ref Expression
metcn ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ)) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((π‘₯𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘₯)𝐷(πΉβ€˜π‘€)) < 𝑦))))
Distinct variable groups:   π‘₯,𝑀,𝑦,𝑧,𝐹   𝑀,𝐽,π‘₯,𝑦,𝑧   𝑀,𝐾,π‘₯,𝑦,𝑧   𝑀,𝑋,π‘₯,𝑦,𝑧   𝑀,π‘Œ,π‘₯,𝑦,𝑧   𝑀,𝐢,π‘₯,𝑦,𝑧   𝑀,𝐷,π‘₯,𝑦,𝑧

Proof of Theorem metcn
StepHypRef Expression
1 metcn.2 . . . 4 𝐽 = (MetOpenβ€˜πΆ)
21mopntopon 23815 . . 3 (𝐢 ∈ (∞Metβ€˜π‘‹) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
3 metcn.4 . . . 4 𝐾 = (MetOpenβ€˜π·)
43mopntopon 23815 . . 3 (𝐷 ∈ (∞Metβ€˜π‘Œ) β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
5 cncnp 22654 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))))
62, 4, 5syl2an 597 . 2 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ)) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))))
7 simplr 768 . . . . 5 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ)) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ π‘₯ ∈ 𝑋) β†’ 𝐹:π‘‹βŸΆπ‘Œ)
81, 3metcnp 23920 . . . . . 6 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ) ∧ π‘₯ ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((π‘₯𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘₯)𝐷(πΉβ€˜π‘€)) < 𝑦))))
98ad4ant124 1174 . . . . 5 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ)) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ π‘₯ ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((π‘₯𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘₯)𝐷(πΉβ€˜π‘€)) < 𝑦))))
107, 9mpbirand 706 . . . 4 ((((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ)) ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ π‘₯ ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯) ↔ βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((π‘₯𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘₯)𝐷(πΉβ€˜π‘€)) < 𝑦)))
1110ralbidva 3169 . . 3 (((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ)) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ (βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯) ↔ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((π‘₯𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘₯)𝐷(πΉβ€˜π‘€)) < 𝑦)))
1211pm5.32da 580 . 2 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ)) β†’ ((𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯)) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((π‘₯𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘₯)𝐷(πΉβ€˜π‘€)) < 𝑦))))
136, 12bitrd 279 1 ((𝐢 ∈ (∞Metβ€˜π‘‹) ∧ 𝐷 ∈ (∞Metβ€˜π‘Œ)) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ ℝ+ βˆ€π‘€ ∈ 𝑋 ((π‘₯𝐢𝑀) < 𝑧 β†’ ((πΉβ€˜π‘₯)𝐷(πΉβ€˜π‘€)) < 𝑦))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3061  βˆƒwrex 3070   class class class wbr 5109  βŸΆwf 6496  β€˜cfv 6500  (class class class)co 7361   < clt 11197  β„+crp 12923  βˆžMetcxmet 20804  MetOpencmopn 20809  TopOnctopon 22282   Cn ccn 22598   CnP ccnp 22599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136  ax-pre-sup 11137
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-er 8654  df-map 8773  df-en 8890  df-dom 8891  df-sdom 8892  df-sup 9386  df-inf 9387  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-div 11821  df-nn 12162  df-2 12224  df-n0 12422  df-z 12508  df-uz 12772  df-q 12882  df-rp 12924  df-xneg 13041  df-xadd 13042  df-xmul 13043  df-topgen 17333  df-psmet 20811  df-xmet 20812  df-bl 20814  df-mopn 20815  df-top 22266  df-topon 22283  df-bases 22319  df-cn 22601  df-cnp 22602
This theorem is referenced by:  nrginvrcn  24079  nghmcn  24132  metdscn  24242  divcn  24254  cncfmet  24295  nmcvcn  29686  blocni  29796  hhcno  30895  hhcnf  30896  fmcncfil  32576  heicant  36163
  Copyright terms: Public domain W3C validator