![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metcn | Structured version Visualization version GIF version |
Description: Two ways to say a mapping from metric πΆ to metric π· is continuous. Theorem 10.1 of [Munkres] p. 127. The second biconditional argument says that for every positive "epsilon" π¦ there is a positive "delta" π§ such that a distance less than delta in πΆ maps to a distance less than epsilon in π·. (Contributed by NM, 15-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
metcn.2 | β’ π½ = (MetOpenβπΆ) |
metcn.4 | β’ πΎ = (MetOpenβπ·) |
Ref | Expression |
---|---|
metcn | β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β (πΉ β (π½ Cn πΎ) β (πΉ:πβΆπ β§ βπ₯ β π βπ¦ β β+ βπ§ β β+ βπ€ β π ((π₯πΆπ€) < π§ β ((πΉβπ₯)π·(πΉβπ€)) < π¦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metcn.2 | . . . 4 β’ π½ = (MetOpenβπΆ) | |
2 | 1 | mopntopon 23944 | . . 3 β’ (πΆ β (βMetβπ) β π½ β (TopOnβπ)) |
3 | metcn.4 | . . . 4 β’ πΎ = (MetOpenβπ·) | |
4 | 3 | mopntopon 23944 | . . 3 β’ (π· β (βMetβπ) β πΎ β (TopOnβπ)) |
5 | cncnp 22783 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (πΉ β (π½ Cn πΎ) β (πΉ:πβΆπ β§ βπ₯ β π πΉ β ((π½ CnP πΎ)βπ₯)))) | |
6 | 2, 4, 5 | syl2an 596 | . 2 β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β (πΉ β (π½ Cn πΎ) β (πΉ:πβΆπ β§ βπ₯ β π πΉ β ((π½ CnP πΎ)βπ₯)))) |
7 | simplr 767 | . . . . 5 β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ πΉ:πβΆπ) β§ π₯ β π) β πΉ:πβΆπ) | |
8 | 1, 3 | metcnp 24049 | . . . . . 6 β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ) β§ π₯ β π) β (πΉ β ((π½ CnP πΎ)βπ₯) β (πΉ:πβΆπ β§ βπ¦ β β+ βπ§ β β+ βπ€ β π ((π₯πΆπ€) < π§ β ((πΉβπ₯)π·(πΉβπ€)) < π¦)))) |
9 | 8 | ad4ant124 1173 | . . . . 5 β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ πΉ:πβΆπ) β§ π₯ β π) β (πΉ β ((π½ CnP πΎ)βπ₯) β (πΉ:πβΆπ β§ βπ¦ β β+ βπ§ β β+ βπ€ β π ((π₯πΆπ€) < π§ β ((πΉβπ₯)π·(πΉβπ€)) < π¦)))) |
10 | 7, 9 | mpbirand 705 | . . . 4 β’ ((((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ πΉ:πβΆπ) β§ π₯ β π) β (πΉ β ((π½ CnP πΎ)βπ₯) β βπ¦ β β+ βπ§ β β+ βπ€ β π ((π₯πΆπ€) < π§ β ((πΉβπ₯)π·(πΉβπ€)) < π¦))) |
11 | 10 | ralbidva 3175 | . . 3 β’ (((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β§ πΉ:πβΆπ) β (βπ₯ β π πΉ β ((π½ CnP πΎ)βπ₯) β βπ₯ β π βπ¦ β β+ βπ§ β β+ βπ€ β π ((π₯πΆπ€) < π§ β ((πΉβπ₯)π·(πΉβπ€)) < π¦))) |
12 | 11 | pm5.32da 579 | . 2 β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β ((πΉ:πβΆπ β§ βπ₯ β π πΉ β ((π½ CnP πΎ)βπ₯)) β (πΉ:πβΆπ β§ βπ₯ β π βπ¦ β β+ βπ§ β β+ βπ€ β π ((π₯πΆπ€) < π§ β ((πΉβπ₯)π·(πΉβπ€)) < π¦)))) |
13 | 6, 12 | bitrd 278 | 1 β’ ((πΆ β (βMetβπ) β§ π· β (βMetβπ)) β (πΉ β (π½ Cn πΎ) β (πΉ:πβΆπ β§ βπ₯ β π βπ¦ β β+ βπ§ β β+ βπ€ β π ((π₯πΆπ€) < π§ β ((πΉβπ₯)π·(πΉβπ€)) < π¦)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 βwrex 3070 class class class wbr 5148 βΆwf 6539 βcfv 6543 (class class class)co 7408 < clt 11247 β+crp 12973 βMetcxmet 20928 MetOpencmopn 20933 TopOnctopon 22411 Cn ccn 22727 CnP ccnp 22728 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-n0 12472 df-z 12558 df-uz 12822 df-q 12932 df-rp 12974 df-xneg 13091 df-xadd 13092 df-xmul 13093 df-topgen 17388 df-psmet 20935 df-xmet 20936 df-bl 20938 df-mopn 20939 df-top 22395 df-topon 22412 df-bases 22448 df-cn 22730 df-cnp 22731 |
This theorem is referenced by: nrginvrcn 24208 nghmcn 24261 metdscn 24371 divcn 24383 cncfmet 24424 nmcvcn 29943 blocni 30053 hhcno 31152 hhcnf 31153 fmcncfil 32906 gg-divcn 35158 heicant 36518 |
Copyright terms: Public domain | W3C validator |