Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > metcn | Structured version Visualization version GIF version |
Description: Two ways to say a mapping from metric 𝐶 to metric 𝐷 is continuous. Theorem 10.1 of [Munkres] p. 127. The second biconditional argument says that for every positive "epsilon" 𝑦 there is a positive "delta" 𝑧 such that a distance less than delta in 𝐶 maps to a distance less than epsilon in 𝐷. (Contributed by NM, 15-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
metcn.2 | ⊢ 𝐽 = (MetOpen‘𝐶) |
metcn.4 | ⊢ 𝐾 = (MetOpen‘𝐷) |
Ref | Expression |
---|---|
metcn | ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝐹‘𝑥)𝐷(𝐹‘𝑤)) < 𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metcn.2 | . . . 4 ⊢ 𝐽 = (MetOpen‘𝐶) | |
2 | 1 | mopntopon 23500 | . . 3 ⊢ (𝐶 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
3 | metcn.4 | . . . 4 ⊢ 𝐾 = (MetOpen‘𝐷) | |
4 | 3 | mopntopon 23500 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌)) |
5 | cncnp 22339 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))) | |
6 | 2, 4, 5 | syl2an 595 | . 2 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))) |
7 | simplr 765 | . . . . 5 ⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝑋) → 𝐹:𝑋⟶𝑌) | |
8 | 1, 3 | metcnp 23603 | . . . . . 6 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑥 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝐹‘𝑥)𝐷(𝐹‘𝑤)) < 𝑦)))) |
9 | 8 | ad4ant124 1171 | . . . . 5 ⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝐹‘𝑥)𝐷(𝐹‘𝑤)) < 𝑦)))) |
10 | 7, 9 | mpbirand 703 | . . . 4 ⊢ ((((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝐹‘𝑥)𝐷(𝐹‘𝑤)) < 𝑦))) |
11 | 10 | ralbidva 3119 | . . 3 ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝐹‘𝑥)𝐷(𝐹‘𝑤)) < 𝑦))) |
12 | 11 | pm5.32da 578 | . 2 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝐹‘𝑥)𝐷(𝐹‘𝑤)) < 𝑦)))) |
13 | 6, 12 | bitrd 278 | 1 ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝐹‘𝑥)𝐷(𝐹‘𝑤)) < 𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 class class class wbr 5070 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 < clt 10940 ℝ+crp 12659 ∞Metcxmet 20495 MetOpencmopn 20500 TopOnctopon 21967 Cn ccn 22283 CnP ccnp 22284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-topgen 17071 df-psmet 20502 df-xmet 20503 df-bl 20505 df-mopn 20506 df-top 21951 df-topon 21968 df-bases 22004 df-cn 22286 df-cnp 22287 |
This theorem is referenced by: nrginvrcn 23762 nghmcn 23815 metdscn 23925 divcn 23937 cncfmet 23978 nmcvcn 28958 blocni 29068 hhcno 30167 hhcnf 30168 fmcncfil 31783 heicant 35739 |
Copyright terms: Public domain | W3C validator |