MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blsscls2 Structured version   Visualization version   GIF version

Theorem blsscls2 23115
Description: A smaller closed ball is contained in a larger open ball. (Contributed by Mario Carneiro, 10-Jan-2014.)
Hypotheses
Ref Expression
mopni.1 𝐽 = (MetOpen‘𝐷)
blcld.3 𝑆 = {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅}
Assertion
Ref Expression
blsscls2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) → 𝑆 ⊆ (𝑃(ball‘𝐷)𝑇))
Distinct variable groups:   𝑧,𝐷   𝑧,𝑅   𝑧,𝑃   𝑧,𝑇   𝑧,𝑋
Allowed substitution hints:   𝑆(𝑧)   𝐽(𝑧)

Proof of Theorem blsscls2
StepHypRef Expression
1 blcld.3 . 2 𝑆 = {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅}
2 simplr3 1214 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → 𝑅 < 𝑇)
3 xmetcl 22942 . . . . . . . 8 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑧𝑋) → (𝑃𝐷𝑧) ∈ ℝ*)
43ad4ant124 1170 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → (𝑃𝐷𝑧) ∈ ℝ*)
5 simplr1 1212 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → 𝑅 ∈ ℝ*)
6 simplr2 1213 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → 𝑇 ∈ ℝ*)
7 xrlelttr 12541 . . . . . . . 8 (((𝑃𝐷𝑧) ∈ ℝ*𝑅 ∈ ℝ*𝑇 ∈ ℝ*) → (((𝑃𝐷𝑧) ≤ 𝑅𝑅 < 𝑇) → (𝑃𝐷𝑧) < 𝑇))
87expcomd 420 . . . . . . 7 (((𝑃𝐷𝑧) ∈ ℝ*𝑅 ∈ ℝ*𝑇 ∈ ℝ*) → (𝑅 < 𝑇 → ((𝑃𝐷𝑧) ≤ 𝑅 → (𝑃𝐷𝑧) < 𝑇)))
94, 5, 6, 8syl3anc 1368 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → (𝑅 < 𝑇 → ((𝑃𝐷𝑧) ≤ 𝑅 → (𝑃𝐷𝑧) < 𝑇)))
102, 9mpd 15 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → ((𝑃𝐷𝑧) ≤ 𝑅 → (𝑃𝐷𝑧) < 𝑇))
11 simp2 1134 . . . . . . 7 ((𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇) → 𝑇 ∈ ℝ*)
12 elbl2 23001 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑇 ∈ ℝ*) ∧ (𝑃𝑋𝑧𝑋)) → (𝑧 ∈ (𝑃(ball‘𝐷)𝑇) ↔ (𝑃𝐷𝑧) < 𝑇))
1312an4s 659 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑇 ∈ ℝ*𝑧𝑋)) → (𝑧 ∈ (𝑃(ball‘𝐷)𝑇) ↔ (𝑃𝐷𝑧) < 𝑇))
1411, 13sylanr1 681 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ ((𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇) ∧ 𝑧𝑋)) → (𝑧 ∈ (𝑃(ball‘𝐷)𝑇) ↔ (𝑃𝐷𝑧) < 𝑇))
1514anassrs 471 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → (𝑧 ∈ (𝑃(ball‘𝐷)𝑇) ↔ (𝑃𝐷𝑧) < 𝑇))
1610, 15sylibrd 262 . . . 4 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) ∧ 𝑧𝑋) → ((𝑃𝐷𝑧) ≤ 𝑅𝑧 ∈ (𝑃(ball‘𝐷)𝑇)))
1716ralrimiva 3152 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) → ∀𝑧𝑋 ((𝑃𝐷𝑧) ≤ 𝑅𝑧 ∈ (𝑃(ball‘𝐷)𝑇)))
18 rabss 4002 . . 3 ({𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⊆ (𝑃(ball‘𝐷)𝑇) ↔ ∀𝑧𝑋 ((𝑃𝐷𝑧) ≤ 𝑅𝑧 ∈ (𝑃(ball‘𝐷)𝑇)))
1917, 18sylibr 237 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) → {𝑧𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⊆ (𝑃(ball‘𝐷)𝑇))
201, 19eqsstrid 3966 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑇 ∈ ℝ*𝑅 < 𝑇)) → 𝑆 ⊆ (𝑃(ball‘𝐷)𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wral 3109  {crab 3113  wss 3884   class class class wbr 5033  cfv 6328  (class class class)co 7139  *cxr 10667   < clt 10668  cle 10669  ∞Metcxmet 20080  ballcbl 20082  MetOpencmopn 20085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-pre-lttri 10604  ax-pre-lttrn 10605
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-po 5442  df-so 5443  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-1st 7675  df-2nd 7676  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-psmet 20087  df-xmet 20088  df-bl 20090
This theorem is referenced by:  blcld  23116  blsscls  23118  ubthlem1  28657
  Copyright terms: Public domain W3C validator