MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odf1 Structured version   Visualization version   GIF version

Theorem odf1 19469
Description: The multiples of an element with infinite order form an infinite cyclic subgroup of 𝐺. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odf1.1 𝑋 = (Base‘𝐺)
odf1.2 𝑂 = (od‘𝐺)
odf1.3 · = (.g𝐺)
odf1.4 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
Assertion
Ref Expression
odf1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) = 0 ↔ 𝐹:ℤ–1-1𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝑂   𝑥, ·   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem odf1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odf1.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
2 odf1.3 . . . . . . . 8 · = (.g𝐺)
31, 2mulgcl 18999 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝐴𝑋) → (𝑥 · 𝐴) ∈ 𝑋)
433expa 1118 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ) ∧ 𝐴𝑋) → (𝑥 · 𝐴) ∈ 𝑋)
54an32s 652 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐴) ∈ 𝑋)
6 odf1.4 . . . . 5 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
75, 6fmptd 7042 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐹:ℤ⟶𝑋)
87adantr 480 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) → 𝐹:ℤ⟶𝑋)
9 oveq1 7348 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 · 𝐴) = (𝑦 · 𝐴))
10 ovex 7374 . . . . . . . . 9 (𝑥 · 𝐴) ∈ V
119, 6, 10fvmpt3i 6929 . . . . . . . 8 (𝑦 ∈ ℤ → (𝐹𝑦) = (𝑦 · 𝐴))
12 oveq1 7348 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 · 𝐴) = (𝑧 · 𝐴))
1312, 6, 10fvmpt3i 6929 . . . . . . . 8 (𝑧 ∈ ℤ → (𝐹𝑧) = (𝑧 · 𝐴))
1411, 13eqeqan12d 2745 . . . . . . 7 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝐹𝑦) = (𝐹𝑧) ↔ (𝑦 · 𝐴) = (𝑧 · 𝐴)))
1514adantl 481 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝐹𝑦) = (𝐹𝑧) ↔ (𝑦 · 𝐴) = (𝑧 · 𝐴)))
16 simplr 768 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑂𝐴) = 0)
1716breq1d 5096 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑦𝑧) ↔ 0 ∥ (𝑦𝑧)))
18 odf1.2 . . . . . . . . 9 𝑂 = (od‘𝐺)
19 eqid 2731 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
201, 18, 2, 19odcong 19456 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑦𝑧) ↔ (𝑦 · 𝐴) = (𝑧 · 𝐴)))
2120ad4ant124 1174 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑦𝑧) ↔ (𝑦 · 𝐴) = (𝑧 · 𝐴)))
22 zsubcl 12509 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑦𝑧) ∈ ℤ)
2322adantl 481 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦𝑧) ∈ ℤ)
24 0dvds 16182 . . . . . . . 8 ((𝑦𝑧) ∈ ℤ → (0 ∥ (𝑦𝑧) ↔ (𝑦𝑧) = 0))
2523, 24syl 17 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (0 ∥ (𝑦𝑧) ↔ (𝑦𝑧) = 0))
2617, 21, 253bitr3d 309 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦 · 𝐴) = (𝑧 · 𝐴) ↔ (𝑦𝑧) = 0))
27 zcn 12468 . . . . . . . 8 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
28 zcn 12468 . . . . . . . 8 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
29 subeq0 11382 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑦𝑧) = 0 ↔ 𝑦 = 𝑧))
3027, 28, 29syl2an 596 . . . . . . 7 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑦𝑧) = 0 ↔ 𝑦 = 𝑧))
3130adantl 481 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦𝑧) = 0 ↔ 𝑦 = 𝑧))
3215, 26, 313bitrd 305 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝐹𝑦) = (𝐹𝑧) ↔ 𝑦 = 𝑧))
3332biimpd 229 . . . 4 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
3433ralrimivva 3175 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) → ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
35 dff13 7183 . . 3 (𝐹:ℤ–1-1𝑋 ↔ (𝐹:ℤ⟶𝑋 ∧ ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
368, 34, 35sylanbrc 583 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) → 𝐹:ℤ–1-1𝑋)
371, 18, 2, 19odid 19445 . . . . . 6 (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = (0g𝐺))
381, 19, 2mulg0 18982 . . . . . 6 (𝐴𝑋 → (0 · 𝐴) = (0g𝐺))
3937, 38eqtr4d 2769 . . . . 5 (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = (0 · 𝐴))
4039ad2antlr 727 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → ((𝑂𝐴) · 𝐴) = (0 · 𝐴))
411, 18odcl 19443 . . . . . . 7 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
4241ad2antlr 727 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → (𝑂𝐴) ∈ ℕ0)
4342nn0zd 12489 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → (𝑂𝐴) ∈ ℤ)
44 oveq1 7348 . . . . . 6 (𝑥 = (𝑂𝐴) → (𝑥 · 𝐴) = ((𝑂𝐴) · 𝐴))
4544, 6, 10fvmpt3i 6929 . . . . 5 ((𝑂𝐴) ∈ ℤ → (𝐹‘(𝑂𝐴)) = ((𝑂𝐴) · 𝐴))
4643, 45syl 17 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → (𝐹‘(𝑂𝐴)) = ((𝑂𝐴) · 𝐴))
47 0zd 12475 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → 0 ∈ ℤ)
48 oveq1 7348 . . . . . 6 (𝑥 = 0 → (𝑥 · 𝐴) = (0 · 𝐴))
4948, 6, 10fvmpt3i 6929 . . . . 5 (0 ∈ ℤ → (𝐹‘0) = (0 · 𝐴))
5047, 49syl 17 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → (𝐹‘0) = (0 · 𝐴))
5140, 46, 503eqtr4d 2776 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → (𝐹‘(𝑂𝐴)) = (𝐹‘0))
52 simpr 484 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → 𝐹:ℤ–1-1𝑋)
53 f1fveq 7191 . . . 4 ((𝐹:ℤ–1-1𝑋 ∧ ((𝑂𝐴) ∈ ℤ ∧ 0 ∈ ℤ)) → ((𝐹‘(𝑂𝐴)) = (𝐹‘0) ↔ (𝑂𝐴) = 0))
5452, 43, 47, 53syl12anc 836 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → ((𝐹‘(𝑂𝐴)) = (𝐹‘0) ↔ (𝑂𝐴) = 0))
5551, 54mpbid 232 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → (𝑂𝐴) = 0)
5636, 55impbida 800 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) = 0 ↔ 𝐹:ℤ–1-1𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047   class class class wbr 5086  cmpt 5167  wf 6472  1-1wf1 6473  cfv 6476  (class class class)co 7341  cc 10999  0cc0 11001  cmin 11339  0cn0 12376  cz 12463  cdvds 16158  Basecbs 17115  0gc0g 17338  Grpcgrp 18841  .gcmg 18975  odcod 19431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-fz 13403  df-fl 13691  df-mod 13769  df-seq 13904  df-exp 13964  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-dvds 16159  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-od 19435
This theorem is referenced by:  odinf  19470  odcl2  19472  zrhchr  33979
  Copyright terms: Public domain W3C validator