MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odf1 Structured version   Visualization version   GIF version

Theorem odf1 19460
Description: The multiples of an element with infinite order form an infinite cyclic subgroup of 𝐺. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odf1.1 𝑋 = (Base‘𝐺)
odf1.2 𝑂 = (od‘𝐺)
odf1.3 · = (.g𝐺)
odf1.4 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
Assertion
Ref Expression
odf1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) = 0 ↔ 𝐹:ℤ–1-1𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝑂   𝑥, ·   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem odf1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odf1.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
2 odf1.3 . . . . . . . 8 · = (.g𝐺)
31, 2mulgcl 18989 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝐴𝑋) → (𝑥 · 𝐴) ∈ 𝑋)
433expa 1118 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ) ∧ 𝐴𝑋) → (𝑥 · 𝐴) ∈ 𝑋)
54an32s 652 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐴) ∈ 𝑋)
6 odf1.4 . . . . 5 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
75, 6fmptd 7052 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐹:ℤ⟶𝑋)
87adantr 480 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) → 𝐹:ℤ⟶𝑋)
9 oveq1 7360 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 · 𝐴) = (𝑦 · 𝐴))
10 ovex 7386 . . . . . . . . 9 (𝑥 · 𝐴) ∈ V
119, 6, 10fvmpt3i 6939 . . . . . . . 8 (𝑦 ∈ ℤ → (𝐹𝑦) = (𝑦 · 𝐴))
12 oveq1 7360 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 · 𝐴) = (𝑧 · 𝐴))
1312, 6, 10fvmpt3i 6939 . . . . . . . 8 (𝑧 ∈ ℤ → (𝐹𝑧) = (𝑧 · 𝐴))
1411, 13eqeqan12d 2743 . . . . . . 7 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝐹𝑦) = (𝐹𝑧) ↔ (𝑦 · 𝐴) = (𝑧 · 𝐴)))
1514adantl 481 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝐹𝑦) = (𝐹𝑧) ↔ (𝑦 · 𝐴) = (𝑧 · 𝐴)))
16 simplr 768 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑂𝐴) = 0)
1716breq1d 5105 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑦𝑧) ↔ 0 ∥ (𝑦𝑧)))
18 odf1.2 . . . . . . . . 9 𝑂 = (od‘𝐺)
19 eqid 2729 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
201, 18, 2, 19odcong 19447 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑦𝑧) ↔ (𝑦 · 𝐴) = (𝑧 · 𝐴)))
2120ad4ant124 1174 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑦𝑧) ↔ (𝑦 · 𝐴) = (𝑧 · 𝐴)))
22 zsubcl 12536 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑦𝑧) ∈ ℤ)
2322adantl 481 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦𝑧) ∈ ℤ)
24 0dvds 16206 . . . . . . . 8 ((𝑦𝑧) ∈ ℤ → (0 ∥ (𝑦𝑧) ↔ (𝑦𝑧) = 0))
2523, 24syl 17 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (0 ∥ (𝑦𝑧) ↔ (𝑦𝑧) = 0))
2617, 21, 253bitr3d 309 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦 · 𝐴) = (𝑧 · 𝐴) ↔ (𝑦𝑧) = 0))
27 zcn 12495 . . . . . . . 8 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
28 zcn 12495 . . . . . . . 8 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
29 subeq0 11409 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑦𝑧) = 0 ↔ 𝑦 = 𝑧))
3027, 28, 29syl2an 596 . . . . . . 7 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑦𝑧) = 0 ↔ 𝑦 = 𝑧))
3130adantl 481 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦𝑧) = 0 ↔ 𝑦 = 𝑧))
3215, 26, 313bitrd 305 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝐹𝑦) = (𝐹𝑧) ↔ 𝑦 = 𝑧))
3332biimpd 229 . . . 4 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
3433ralrimivva 3172 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) → ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
35 dff13 7195 . . 3 (𝐹:ℤ–1-1𝑋 ↔ (𝐹:ℤ⟶𝑋 ∧ ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
368, 34, 35sylanbrc 583 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) → 𝐹:ℤ–1-1𝑋)
371, 18, 2, 19odid 19436 . . . . . 6 (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = (0g𝐺))
381, 19, 2mulg0 18972 . . . . . 6 (𝐴𝑋 → (0 · 𝐴) = (0g𝐺))
3937, 38eqtr4d 2767 . . . . 5 (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = (0 · 𝐴))
4039ad2antlr 727 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → ((𝑂𝐴) · 𝐴) = (0 · 𝐴))
411, 18odcl 19434 . . . . . . 7 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
4241ad2antlr 727 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → (𝑂𝐴) ∈ ℕ0)
4342nn0zd 12516 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → (𝑂𝐴) ∈ ℤ)
44 oveq1 7360 . . . . . 6 (𝑥 = (𝑂𝐴) → (𝑥 · 𝐴) = ((𝑂𝐴) · 𝐴))
4544, 6, 10fvmpt3i 6939 . . . . 5 ((𝑂𝐴) ∈ ℤ → (𝐹‘(𝑂𝐴)) = ((𝑂𝐴) · 𝐴))
4643, 45syl 17 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → (𝐹‘(𝑂𝐴)) = ((𝑂𝐴) · 𝐴))
47 0zd 12502 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → 0 ∈ ℤ)
48 oveq1 7360 . . . . . 6 (𝑥 = 0 → (𝑥 · 𝐴) = (0 · 𝐴))
4948, 6, 10fvmpt3i 6939 . . . . 5 (0 ∈ ℤ → (𝐹‘0) = (0 · 𝐴))
5047, 49syl 17 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → (𝐹‘0) = (0 · 𝐴))
5140, 46, 503eqtr4d 2774 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → (𝐹‘(𝑂𝐴)) = (𝐹‘0))
52 simpr 484 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → 𝐹:ℤ–1-1𝑋)
53 f1fveq 7203 . . . 4 ((𝐹:ℤ–1-1𝑋 ∧ ((𝑂𝐴) ∈ ℤ ∧ 0 ∈ ℤ)) → ((𝐹‘(𝑂𝐴)) = (𝐹‘0) ↔ (𝑂𝐴) = 0))
5452, 43, 47, 53syl12anc 836 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → ((𝐹‘(𝑂𝐴)) = (𝐹‘0) ↔ (𝑂𝐴) = 0))
5551, 54mpbid 232 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → (𝑂𝐴) = 0)
5636, 55impbida 800 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) = 0 ↔ 𝐹:ℤ–1-1𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5095  cmpt 5176  wf 6482  1-1wf1 6483  cfv 6486  (class class class)co 7353  cc 11026  0cc0 11028  cmin 11366  0cn0 12403  cz 12490  cdvds 16182  Basecbs 17139  0gc0g 17362  Grpcgrp 18831  .gcmg 18965  odcod 19422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-n0 12404  df-z 12491  df-uz 12755  df-rp 12913  df-fz 13430  df-fl 13715  df-mod 13793  df-seq 13928  df-exp 13988  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-dvds 16183  df-0g 17364  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-grp 18834  df-minusg 18835  df-sbg 18836  df-mulg 18966  df-od 19426
This theorem is referenced by:  odinf  19461  odcl2  19463  zrhchr  33960
  Copyright terms: Public domain W3C validator