MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odf1 Structured version   Visualization version   GIF version

Theorem odf1 19482
Description: The multiples of an element with infinite order form an infinite cyclic subgroup of 𝐺. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odf1.1 𝑋 = (Base‘𝐺)
odf1.2 𝑂 = (od‘𝐺)
odf1.3 · = (.g𝐺)
odf1.4 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
Assertion
Ref Expression
odf1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) = 0 ↔ 𝐹:ℤ–1-1𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝑂   𝑥, ·   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem odf1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 odf1.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
2 odf1.3 . . . . . . . 8 · = (.g𝐺)
31, 2mulgcl 19012 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝐴𝑋) → (𝑥 · 𝐴) ∈ 𝑋)
433expa 1118 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ) ∧ 𝐴𝑋) → (𝑥 · 𝐴) ∈ 𝑋)
54an32s 652 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐴) ∈ 𝑋)
6 odf1.4 . . . . 5 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
75, 6fmptd 7056 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐹:ℤ⟶𝑋)
87adantr 480 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) → 𝐹:ℤ⟶𝑋)
9 oveq1 7362 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 · 𝐴) = (𝑦 · 𝐴))
10 ovex 7388 . . . . . . . . 9 (𝑥 · 𝐴) ∈ V
119, 6, 10fvmpt3i 6943 . . . . . . . 8 (𝑦 ∈ ℤ → (𝐹𝑦) = (𝑦 · 𝐴))
12 oveq1 7362 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 · 𝐴) = (𝑧 · 𝐴))
1312, 6, 10fvmpt3i 6943 . . . . . . . 8 (𝑧 ∈ ℤ → (𝐹𝑧) = (𝑧 · 𝐴))
1411, 13eqeqan12d 2747 . . . . . . 7 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝐹𝑦) = (𝐹𝑧) ↔ (𝑦 · 𝐴) = (𝑧 · 𝐴)))
1514adantl 481 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝐹𝑦) = (𝐹𝑧) ↔ (𝑦 · 𝐴) = (𝑧 · 𝐴)))
16 simplr 768 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑂𝐴) = 0)
1716breq1d 5105 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑦𝑧) ↔ 0 ∥ (𝑦𝑧)))
18 odf1.2 . . . . . . . . 9 𝑂 = (od‘𝐺)
19 eqid 2733 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
201, 18, 2, 19odcong 19469 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑦𝑧) ↔ (𝑦 · 𝐴) = (𝑧 · 𝐴)))
2120ad4ant124 1174 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑦𝑧) ↔ (𝑦 · 𝐴) = (𝑧 · 𝐴)))
22 zsubcl 12524 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑦𝑧) ∈ ℤ)
2322adantl 481 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦𝑧) ∈ ℤ)
24 0dvds 16194 . . . . . . . 8 ((𝑦𝑧) ∈ ℤ → (0 ∥ (𝑦𝑧) ↔ (𝑦𝑧) = 0))
2523, 24syl 17 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (0 ∥ (𝑦𝑧) ↔ (𝑦𝑧) = 0))
2617, 21, 253bitr3d 309 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦 · 𝐴) = (𝑧 · 𝐴) ↔ (𝑦𝑧) = 0))
27 zcn 12484 . . . . . . . 8 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
28 zcn 12484 . . . . . . . 8 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
29 subeq0 11398 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑦𝑧) = 0 ↔ 𝑦 = 𝑧))
3027, 28, 29syl2an 596 . . . . . . 7 ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑦𝑧) = 0 ↔ 𝑦 = 𝑧))
3130adantl 481 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦𝑧) = 0 ↔ 𝑦 = 𝑧))
3215, 26, 313bitrd 305 . . . . 5 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝐹𝑦) = (𝐹𝑧) ↔ 𝑦 = 𝑧))
3332biimpd 229 . . . 4 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
3433ralrimivva 3176 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) → ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
35 dff13 7197 . . 3 (𝐹:ℤ–1-1𝑋 ↔ (𝐹:ℤ⟶𝑋 ∧ ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
368, 34, 35sylanbrc 583 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) → 𝐹:ℤ–1-1𝑋)
371, 18, 2, 19odid 19458 . . . . . 6 (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = (0g𝐺))
381, 19, 2mulg0 18995 . . . . . 6 (𝐴𝑋 → (0 · 𝐴) = (0g𝐺))
3937, 38eqtr4d 2771 . . . . 5 (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = (0 · 𝐴))
4039ad2antlr 727 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → ((𝑂𝐴) · 𝐴) = (0 · 𝐴))
411, 18odcl 19456 . . . . . . 7 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
4241ad2antlr 727 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → (𝑂𝐴) ∈ ℕ0)
4342nn0zd 12504 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → (𝑂𝐴) ∈ ℤ)
44 oveq1 7362 . . . . . 6 (𝑥 = (𝑂𝐴) → (𝑥 · 𝐴) = ((𝑂𝐴) · 𝐴))
4544, 6, 10fvmpt3i 6943 . . . . 5 ((𝑂𝐴) ∈ ℤ → (𝐹‘(𝑂𝐴)) = ((𝑂𝐴) · 𝐴))
4643, 45syl 17 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → (𝐹‘(𝑂𝐴)) = ((𝑂𝐴) · 𝐴))
47 0zd 12491 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → 0 ∈ ℤ)
48 oveq1 7362 . . . . . 6 (𝑥 = 0 → (𝑥 · 𝐴) = (0 · 𝐴))
4948, 6, 10fvmpt3i 6943 . . . . 5 (0 ∈ ℤ → (𝐹‘0) = (0 · 𝐴))
5047, 49syl 17 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → (𝐹‘0) = (0 · 𝐴))
5140, 46, 503eqtr4d 2778 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → (𝐹‘(𝑂𝐴)) = (𝐹‘0))
52 simpr 484 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → 𝐹:ℤ–1-1𝑋)
53 f1fveq 7205 . . . 4 ((𝐹:ℤ–1-1𝑋 ∧ ((𝑂𝐴) ∈ ℤ ∧ 0 ∈ ℤ)) → ((𝐹‘(𝑂𝐴)) = (𝐹‘0) ↔ (𝑂𝐴) = 0))
5452, 43, 47, 53syl12anc 836 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → ((𝐹‘(𝑂𝐴)) = (𝐹‘0) ↔ (𝑂𝐴) = 0))
5551, 54mpbid 232 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝐹:ℤ–1-1𝑋) → (𝑂𝐴) = 0)
5636, 55impbida 800 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) = 0 ↔ 𝐹:ℤ–1-1𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048   class class class wbr 5095  cmpt 5176  wf 6485  1-1wf1 6486  cfv 6489  (class class class)co 7355  cc 11015  0cc0 11017  cmin 11355  0cn0 12392  cz 12479  cdvds 16170  Basecbs 17127  0gc0g 17350  Grpcgrp 18854  .gcmg 18988  odcod 19444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9337  df-inf 9338  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-z 12480  df-uz 12743  df-rp 12897  df-fz 13415  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-dvds 16171  df-0g 17352  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-grp 18857  df-minusg 18858  df-sbg 18859  df-mulg 18989  df-od 19448
This theorem is referenced by:  odinf  19483  odcl2  19485  zrhchr  34059
  Copyright terms: Public domain W3C validator