Step | Hyp | Ref
| Expression |
1 | | odf1.1 |
. . . . . . . 8
⊢ 𝑋 = (Base‘𝐺) |
2 | | odf1.3 |
. . . . . . . 8
⊢ · =
(.g‘𝐺) |
3 | 1, 2 | mulgcl 18730 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝐴 ∈ 𝑋) → (𝑥 · 𝐴) ∈ 𝑋) |
4 | 3 | 3expa 1117 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ) ∧ 𝐴 ∈ 𝑋) → (𝑥 · 𝐴) ∈ 𝑋) |
5 | 4 | an32s 649 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐴) ∈ 𝑋) |
6 | | odf1.4 |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) |
7 | 5, 6 | fmptd 6997 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐹:ℤ⟶𝑋) |
8 | 7 | adantr 481 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) = 0) → 𝐹:ℤ⟶𝑋) |
9 | | oveq1 7291 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑥 · 𝐴) = (𝑦 · 𝐴)) |
10 | | ovex 7317 |
. . . . . . . . 9
⊢ (𝑥 · 𝐴) ∈ V |
11 | 9, 6, 10 | fvmpt3i 6889 |
. . . . . . . 8
⊢ (𝑦 ∈ ℤ → (𝐹‘𝑦) = (𝑦 · 𝐴)) |
12 | | oveq1 7291 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝑥 · 𝐴) = (𝑧 · 𝐴)) |
13 | 12, 6, 10 | fvmpt3i 6889 |
. . . . . . . 8
⊢ (𝑧 ∈ ℤ → (𝐹‘𝑧) = (𝑧 · 𝐴)) |
14 | 11, 13 | eqeqan12d 2753 |
. . . . . . 7
⊢ ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝐹‘𝑦) = (𝐹‘𝑧) ↔ (𝑦 · 𝐴) = (𝑧 · 𝐴))) |
15 | 14 | adantl 482 |
. . . . . 6
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝐹‘𝑦) = (𝐹‘𝑧) ↔ (𝑦 · 𝐴) = (𝑧 · 𝐴))) |
16 | | simplr 766 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑂‘𝐴) = 0) |
17 | 16 | breq1d 5085 |
. . . . . . 7
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑂‘𝐴) ∥ (𝑦 − 𝑧) ↔ 0 ∥ (𝑦 − 𝑧))) |
18 | | odf1.2 |
. . . . . . . . 9
⊢ 𝑂 = (od‘𝐺) |
19 | | eqid 2739 |
. . . . . . . . 9
⊢
(0g‘𝐺) = (0g‘𝐺) |
20 | 1, 18, 2, 19 | odcong 19166 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑂‘𝐴) ∥ (𝑦 − 𝑧) ↔ (𝑦 · 𝐴) = (𝑧 · 𝐴))) |
21 | 20 | ad4ant124 1172 |
. . . . . . 7
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑂‘𝐴) ∥ (𝑦 − 𝑧) ↔ (𝑦 · 𝐴) = (𝑧 · 𝐴))) |
22 | | zsubcl 12371 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → (𝑦 − 𝑧) ∈ ℤ) |
23 | 22 | adantl 482 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (𝑦 − 𝑧) ∈ ℤ) |
24 | | 0dvds 15995 |
. . . . . . . 8
⊢ ((𝑦 − 𝑧) ∈ ℤ → (0 ∥ (𝑦 − 𝑧) ↔ (𝑦 − 𝑧) = 0)) |
25 | 23, 24 | syl 17 |
. . . . . . 7
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → (0 ∥ (𝑦 − 𝑧) ↔ (𝑦 − 𝑧) = 0)) |
26 | 17, 21, 25 | 3bitr3d 309 |
. . . . . 6
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦 · 𝐴) = (𝑧 · 𝐴) ↔ (𝑦 − 𝑧) = 0)) |
27 | | zcn 12333 |
. . . . . . . 8
⊢ (𝑦 ∈ ℤ → 𝑦 ∈
ℂ) |
28 | | zcn 12333 |
. . . . . . . 8
⊢ (𝑧 ∈ ℤ → 𝑧 ∈
ℂ) |
29 | | subeq0 11256 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑦 − 𝑧) = 0 ↔ 𝑦 = 𝑧)) |
30 | 27, 28, 29 | syl2an 596 |
. . . . . . 7
⊢ ((𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((𝑦 − 𝑧) = 0 ↔ 𝑦 = 𝑧)) |
31 | 30 | adantl 482 |
. . . . . 6
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝑦 − 𝑧) = 0 ↔ 𝑦 = 𝑧)) |
32 | 15, 26, 31 | 3bitrd 305 |
. . . . 5
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝐹‘𝑦) = (𝐹‘𝑧) ↔ 𝑦 = 𝑧)) |
33 | 32 | biimpd 228 |
. . . 4
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) = 0) ∧ (𝑦 ∈ ℤ ∧ 𝑧 ∈ ℤ)) → ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧)) |
34 | 33 | ralrimivva 3124 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) = 0) → ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧)) |
35 | | dff13 7137 |
. . 3
⊢ (𝐹:ℤ–1-1→𝑋 ↔ (𝐹:ℤ⟶𝑋 ∧ ∀𝑦 ∈ ℤ ∀𝑧 ∈ ℤ ((𝐹‘𝑦) = (𝐹‘𝑧) → 𝑦 = 𝑧))) |
36 | 8, 34, 35 | sylanbrc 583 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) = 0) → 𝐹:ℤ–1-1→𝑋) |
37 | 1, 18, 2, 19 | odid 19155 |
. . . . . 6
⊢ (𝐴 ∈ 𝑋 → ((𝑂‘𝐴) · 𝐴) = (0g‘𝐺)) |
38 | 1, 19, 2 | mulg0 18716 |
. . . . . 6
⊢ (𝐴 ∈ 𝑋 → (0 · 𝐴) = (0g‘𝐺)) |
39 | 37, 38 | eqtr4d 2782 |
. . . . 5
⊢ (𝐴 ∈ 𝑋 → ((𝑂‘𝐴) · 𝐴) = (0 · 𝐴)) |
40 | 39 | ad2antlr 724 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:ℤ–1-1→𝑋) → ((𝑂‘𝐴) · 𝐴) = (0 · 𝐴)) |
41 | 1, 18 | odcl 19153 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) ∈
ℕ0) |
42 | 41 | ad2antlr 724 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:ℤ–1-1→𝑋) → (𝑂‘𝐴) ∈
ℕ0) |
43 | 42 | nn0zd 12433 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:ℤ–1-1→𝑋) → (𝑂‘𝐴) ∈ ℤ) |
44 | | oveq1 7291 |
. . . . . 6
⊢ (𝑥 = (𝑂‘𝐴) → (𝑥 · 𝐴) = ((𝑂‘𝐴) · 𝐴)) |
45 | 44, 6, 10 | fvmpt3i 6889 |
. . . . 5
⊢ ((𝑂‘𝐴) ∈ ℤ → (𝐹‘(𝑂‘𝐴)) = ((𝑂‘𝐴) · 𝐴)) |
46 | 43, 45 | syl 17 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:ℤ–1-1→𝑋) → (𝐹‘(𝑂‘𝐴)) = ((𝑂‘𝐴) · 𝐴)) |
47 | | 0zd 12340 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:ℤ–1-1→𝑋) → 0 ∈ ℤ) |
48 | | oveq1 7291 |
. . . . . 6
⊢ (𝑥 = 0 → (𝑥 · 𝐴) = (0 · 𝐴)) |
49 | 48, 6, 10 | fvmpt3i 6889 |
. . . . 5
⊢ (0 ∈
ℤ → (𝐹‘0)
= (0 · 𝐴)) |
50 | 47, 49 | syl 17 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:ℤ–1-1→𝑋) → (𝐹‘0) = (0 · 𝐴)) |
51 | 40, 46, 50 | 3eqtr4d 2789 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:ℤ–1-1→𝑋) → (𝐹‘(𝑂‘𝐴)) = (𝐹‘0)) |
52 | | simpr 485 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:ℤ–1-1→𝑋) → 𝐹:ℤ–1-1→𝑋) |
53 | | f1fveq 7144 |
. . . 4
⊢ ((𝐹:ℤ–1-1→𝑋 ∧ ((𝑂‘𝐴) ∈ ℤ ∧ 0 ∈ ℤ))
→ ((𝐹‘(𝑂‘𝐴)) = (𝐹‘0) ↔ (𝑂‘𝐴) = 0)) |
54 | 52, 43, 47, 53 | syl12anc 834 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:ℤ–1-1→𝑋) → ((𝐹‘(𝑂‘𝐴)) = (𝐹‘0) ↔ (𝑂‘𝐴) = 0)) |
55 | 51, 54 | mpbid 231 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝐹:ℤ–1-1→𝑋) → (𝑂‘𝐴) = 0) |
56 | 36, 55 | impbida 798 |
1
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) = 0 ↔ 𝐹:ℤ–1-1→𝑋)) |