MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blin Structured version   Visualization version   GIF version

Theorem blin 23774
Description: The intersection of two balls with the same center is the smaller of them. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blin (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑃(ball‘𝐷)𝑆)) = (𝑃(ball‘𝐷)if(𝑅𝑆, 𝑅, 𝑆)))

Proof of Theorem blin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 xmetcl 23684 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
21ad4ant124 1173 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) ∧ 𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
3 simplrl 775 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ*)
4 simplrr 776 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) ∧ 𝑥𝑋) → 𝑆 ∈ ℝ*)
5 xrltmin 13101 . . . . 5 (((𝑃𝐷𝑥) ∈ ℝ*𝑅 ∈ ℝ*𝑆 ∈ ℝ*) → ((𝑃𝐷𝑥) < if(𝑅𝑆, 𝑅, 𝑆) ↔ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑃𝐷𝑥) < 𝑆)))
62, 3, 4, 5syl3anc 1371 . . . 4 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) ∧ 𝑥𝑋) → ((𝑃𝐷𝑥) < if(𝑅𝑆, 𝑅, 𝑆) ↔ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑃𝐷𝑥) < 𝑆)))
76pm5.32da 579 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < if(𝑅𝑆, 𝑅, 𝑆)) ↔ (𝑥𝑋 ∧ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑃𝐷𝑥) < 𝑆))))
8 ifcl 4531 . . . 4 ((𝑅 ∈ ℝ*𝑆 ∈ ℝ*) → if(𝑅𝑆, 𝑅, 𝑆) ∈ ℝ*)
9 elbl 23741 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ if(𝑅𝑆, 𝑅, 𝑆) ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)if(𝑅𝑆, 𝑅, 𝑆)) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < if(𝑅𝑆, 𝑅, 𝑆))))
1093expa 1118 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ if(𝑅𝑆, 𝑅, 𝑆) ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)if(𝑅𝑆, 𝑅, 𝑆)) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < if(𝑅𝑆, 𝑅, 𝑆))))
118, 10sylan2 593 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → (𝑥 ∈ (𝑃(ball‘𝐷)if(𝑅𝑆, 𝑅, 𝑆)) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < if(𝑅𝑆, 𝑅, 𝑆))))
12 elbl 23741 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
13123expa 1118 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
1413adantrr 715 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
15 elbl 23741 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑆 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑆) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑆)))
16153expa 1118 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑆 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑆) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑆)))
1716adantrl 714 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑆) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑆)))
1814, 17anbi12d 631 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → ((𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑆)) ↔ ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑆))))
19 elin 3926 . . . 4 (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑃(ball‘𝐷)𝑆)) ↔ (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑆)))
20 anandi 674 . . . 4 ((𝑥𝑋 ∧ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑃𝐷𝑥) < 𝑆)) ↔ ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑆)))
2118, 19, 203bitr4g 313 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑃(ball‘𝐷)𝑆)) ↔ (𝑥𝑋 ∧ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑃𝐷𝑥) < 𝑆))))
227, 11, 213bitr4rd 311 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑃(ball‘𝐷)𝑆)) ↔ 𝑥 ∈ (𝑃(ball‘𝐷)if(𝑅𝑆, 𝑅, 𝑆))))
2322eqrdv 2734 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑃(ball‘𝐷)𝑆)) = (𝑃(ball‘𝐷)if(𝑅𝑆, 𝑅, 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  cin 3909  ifcif 4486   class class class wbr 5105  cfv 6496  (class class class)co 7357  *cxr 11188   < clt 11189  cle 11190  ∞Metcxmet 20781  ballcbl 20783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-pre-lttri 11125  ax-pre-lttrn 11126
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-psmet 20788  df-xmet 20789  df-bl 20791
This theorem is referenced by:  blin2  23782
  Copyright terms: Public domain W3C validator