MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blin Structured version   Visualization version   GIF version

Theorem blin 24309
Description: The intersection of two balls with the same center is the smaller of them. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blin (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑃(ball‘𝐷)𝑆)) = (𝑃(ball‘𝐷)if(𝑅𝑆, 𝑅, 𝑆)))

Proof of Theorem blin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 xmetcl 24219 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
21ad4ant124 1174 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) ∧ 𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
3 simplrl 776 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ*)
4 simplrr 777 . . . . 5 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) ∧ 𝑥𝑋) → 𝑆 ∈ ℝ*)
5 xrltmin 13142 . . . . 5 (((𝑃𝐷𝑥) ∈ ℝ*𝑅 ∈ ℝ*𝑆 ∈ ℝ*) → ((𝑃𝐷𝑥) < if(𝑅𝑆, 𝑅, 𝑆) ↔ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑃𝐷𝑥) < 𝑆)))
62, 3, 4, 5syl3anc 1373 . . . 4 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) ∧ 𝑥𝑋) → ((𝑃𝐷𝑥) < if(𝑅𝑆, 𝑅, 𝑆) ↔ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑃𝐷𝑥) < 𝑆)))
76pm5.32da 579 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < if(𝑅𝑆, 𝑅, 𝑆)) ↔ (𝑥𝑋 ∧ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑃𝐷𝑥) < 𝑆))))
8 ifcl 4534 . . . 4 ((𝑅 ∈ ℝ*𝑆 ∈ ℝ*) → if(𝑅𝑆, 𝑅, 𝑆) ∈ ℝ*)
9 elbl 24276 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ if(𝑅𝑆, 𝑅, 𝑆) ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)if(𝑅𝑆, 𝑅, 𝑆)) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < if(𝑅𝑆, 𝑅, 𝑆))))
1093expa 1118 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ if(𝑅𝑆, 𝑅, 𝑆) ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)if(𝑅𝑆, 𝑅, 𝑆)) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < if(𝑅𝑆, 𝑅, 𝑆))))
118, 10sylan2 593 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → (𝑥 ∈ (𝑃(ball‘𝐷)if(𝑅𝑆, 𝑅, 𝑆)) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < if(𝑅𝑆, 𝑅, 𝑆))))
12 elbl 24276 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
13123expa 1118 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
1413adantrr 717 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
15 elbl 24276 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑆 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑆) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑆)))
16153expa 1118 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ 𝑆 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑆) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑆)))
1716adantrl 716 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑆) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑆)))
1814, 17anbi12d 632 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → ((𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑆)) ↔ ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑆))))
19 elin 3930 . . . 4 (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑃(ball‘𝐷)𝑆)) ↔ (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑆)))
20 anandi 676 . . . 4 ((𝑥𝑋 ∧ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑃𝐷𝑥) < 𝑆)) ↔ ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑆)))
2118, 19, 203bitr4g 314 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑃(ball‘𝐷)𝑆)) ↔ (𝑥𝑋 ∧ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑃𝐷𝑥) < 𝑆))))
227, 11, 213bitr4rd 312 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑃(ball‘𝐷)𝑆)) ↔ 𝑥 ∈ (𝑃(ball‘𝐷)if(𝑅𝑆, 𝑅, 𝑆))))
2322eqrdv 2727 1 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑃(ball‘𝐷)𝑆)) = (𝑃(ball‘𝐷)if(𝑅𝑆, 𝑅, 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cin 3913  ifcif 4488   class class class wbr 5107  cfv 6511  (class class class)co 7387  *cxr 11207   < clt 11208  cle 11209  ∞Metcxmet 21249  ballcbl 21251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-psmet 21256  df-xmet 21257  df-bl 21259
This theorem is referenced by:  blin2  24317
  Copyright terms: Public domain W3C validator