Step | Hyp | Ref
| Expression |
1 | | xmetcl 23392 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑃𝐷𝑥) ∈
ℝ*) |
2 | 1 | ad4ant124 1171 |
. . . . 5
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*))
∧ 𝑥 ∈ 𝑋) → (𝑃𝐷𝑥) ∈
ℝ*) |
3 | | simplrl 773 |
. . . . 5
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*))
∧ 𝑥 ∈ 𝑋) → 𝑅 ∈
ℝ*) |
4 | | simplrr 774 |
. . . . 5
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*))
∧ 𝑥 ∈ 𝑋) → 𝑆 ∈
ℝ*) |
5 | | xrltmin 12845 |
. . . . 5
⊢ (((𝑃𝐷𝑥) ∈ ℝ* ∧ 𝑅 ∈ ℝ*
∧ 𝑆 ∈
ℝ*) → ((𝑃𝐷𝑥) < if(𝑅 ≤ 𝑆, 𝑅, 𝑆) ↔ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑃𝐷𝑥) < 𝑆))) |
6 | 2, 3, 4, 5 | syl3anc 1369 |
. . . 4
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*))
∧ 𝑥 ∈ 𝑋) → ((𝑃𝐷𝑥) < if(𝑅 ≤ 𝑆, 𝑅, 𝑆) ↔ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑃𝐷𝑥) < 𝑆))) |
7 | 6 | pm5.32da 578 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*))
→ ((𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < if(𝑅 ≤ 𝑆, 𝑅, 𝑆)) ↔ (𝑥 ∈ 𝑋 ∧ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑃𝐷𝑥) < 𝑆)))) |
8 | | ifcl 4501 |
. . . 4
⊢ ((𝑅 ∈ ℝ*
∧ 𝑆 ∈
ℝ*) → if(𝑅 ≤ 𝑆, 𝑅, 𝑆) ∈
ℝ*) |
9 | | elbl 23449 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ if(𝑅 ≤ 𝑆, 𝑅, 𝑆) ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)if(𝑅 ≤ 𝑆, 𝑅, 𝑆)) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < if(𝑅 ≤ 𝑆, 𝑅, 𝑆)))) |
10 | 9 | 3expa 1116 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ if(𝑅 ≤ 𝑆, 𝑅, 𝑆) ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)if(𝑅 ≤ 𝑆, 𝑅, 𝑆)) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < if(𝑅 ≤ 𝑆, 𝑅, 𝑆)))) |
11 | 8, 10 | sylan2 592 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*))
→ (𝑥 ∈ (𝑃(ball‘𝐷)if(𝑅 ≤ 𝑆, 𝑅, 𝑆)) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < if(𝑅 ≤ 𝑆, 𝑅, 𝑆)))) |
12 | | elbl 23449 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))) |
13 | 12 | 3expa 1116 |
. . . . . 6
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑅 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))) |
14 | 13 | adantrr 713 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*))
→ (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))) |
15 | | elbl 23449 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑆) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑆))) |
16 | 15 | 3expa 1116 |
. . . . . 6
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ 𝑆 ∈ ℝ*) → (𝑥 ∈ (𝑃(ball‘𝐷)𝑆) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑆))) |
17 | 16 | adantrl 712 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*))
→ (𝑥 ∈ (𝑃(ball‘𝐷)𝑆) ↔ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑆))) |
18 | 14, 17 | anbi12d 630 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*))
→ ((𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑆)) ↔ ((𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑆)))) |
19 | | elin 3899 |
. . . 4
⊢ (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑃(ball‘𝐷)𝑆)) ↔ (𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ∧ 𝑥 ∈ (𝑃(ball‘𝐷)𝑆))) |
20 | | anandi 672 |
. . . 4
⊢ ((𝑥 ∈ 𝑋 ∧ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑃𝐷𝑥) < 𝑆)) ↔ ((𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) ∧ (𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑆))) |
21 | 18, 19, 20 | 3bitr4g 313 |
. . 3
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*))
→ (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑃(ball‘𝐷)𝑆)) ↔ (𝑥 ∈ 𝑋 ∧ ((𝑃𝐷𝑥) < 𝑅 ∧ (𝑃𝐷𝑥) < 𝑆)))) |
22 | 7, 11, 21 | 3bitr4rd 311 |
. 2
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*))
→ (𝑥 ∈ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑃(ball‘𝐷)𝑆)) ↔ 𝑥 ∈ (𝑃(ball‘𝐷)if(𝑅 ≤ 𝑆, 𝑅, 𝑆)))) |
23 | 22 | eqrdv 2736 |
1
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ*))
→ ((𝑃(ball‘𝐷)𝑅) ∩ (𝑃(ball‘𝐷)𝑆)) = (𝑃(ball‘𝐷)if(𝑅 ≤ 𝑆, 𝑅, 𝑆))) |