MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsxmet Structured version   Visualization version   GIF version

Theorem xrsxmet 23972
Description: The metric on the extended reals is a proper extended metric. (Contributed by Mario Carneiro, 4-Sep-2015.)
Hypothesis
Ref Expression
xrsxmet.1 𝐷 = (dist‘ℝ*𝑠)
Assertion
Ref Expression
xrsxmet 𝐷 ∈ (∞Met‘ℝ*)

Proof of Theorem xrsxmet
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrex 12727 . . . 4 * ∈ V
21a1i 11 . . 3 (⊤ → ℝ* ∈ V)
3 id 22 . . . . . . . 8 (𝑦 ∈ ℝ*𝑦 ∈ ℝ*)
4 xnegcl 12947 . . . . . . . 8 (𝑥 ∈ ℝ* → -𝑒𝑥 ∈ ℝ*)
5 xaddcl 12973 . . . . . . . 8 ((𝑦 ∈ ℝ* ∧ -𝑒𝑥 ∈ ℝ*) → (𝑦 +𝑒 -𝑒𝑥) ∈ ℝ*)
63, 4, 5syl2anr 597 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 +𝑒 -𝑒𝑥) ∈ ℝ*)
7 xnegcl 12947 . . . . . . . 8 (𝑦 ∈ ℝ* → -𝑒𝑦 ∈ ℝ*)
8 xaddcl 12973 . . . . . . . 8 ((𝑥 ∈ ℝ* ∧ -𝑒𝑦 ∈ ℝ*) → (𝑥 +𝑒 -𝑒𝑦) ∈ ℝ*)
97, 8sylan2 593 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 +𝑒 -𝑒𝑦) ∈ ℝ*)
106, 9ifcld 4505 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) ∈ ℝ*)
1110rgen2 3120 . . . . 5 𝑥 ∈ ℝ*𝑦 ∈ ℝ* if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) ∈ ℝ*
12 xrsxmet.1 . . . . . . 7 𝐷 = (dist‘ℝ*𝑠)
1312xrsds 20641 . . . . . 6 𝐷 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
1413fmpo 7908 . . . . 5 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) ∈ ℝ*𝐷:(ℝ* × ℝ*)⟶ℝ*)
1511, 14mpbi 229 . . . 4 𝐷:(ℝ* × ℝ*)⟶ℝ*
1615a1i 11 . . 3 (⊤ → 𝐷:(ℝ* × ℝ*)⟶ℝ*)
17 breq2 5078 . . . . . 6 ((𝑦 +𝑒 -𝑒𝑥) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) → (0 ≤ (𝑦 +𝑒 -𝑒𝑥) ↔ 0 ≤ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))))
18 breq2 5078 . . . . . 6 ((𝑥 +𝑒 -𝑒𝑦) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) → (0 ≤ (𝑥 +𝑒 -𝑒𝑦) ↔ 0 ≤ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))))
19 xsubge0 12995 . . . . . . . 8 ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (0 ≤ (𝑦 +𝑒 -𝑒𝑥) ↔ 𝑥𝑦))
2019ancoms 459 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (0 ≤ (𝑦 +𝑒 -𝑒𝑥) ↔ 𝑥𝑦))
2120biimpar 478 . . . . . 6 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → 0 ≤ (𝑦 +𝑒 -𝑒𝑥))
22 xrletri 12887 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝑦𝑦𝑥))
2322orcanai 1000 . . . . . . 7 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥𝑦) → 𝑦𝑥)
24 xsubge0 12995 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (0 ≤ (𝑥 +𝑒 -𝑒𝑦) ↔ 𝑦𝑥))
2524biimpar 478 . . . . . . 7 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑦𝑥) → 0 ≤ (𝑥 +𝑒 -𝑒𝑦))
2623, 25syldan 591 . . . . . 6 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥𝑦) → 0 ≤ (𝑥 +𝑒 -𝑒𝑦))
2717, 18, 21, 26ifbothda 4497 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 0 ≤ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
2812xrsdsval 20642 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝐷𝑦) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
2927, 28breqtrrd 5102 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 0 ≤ (𝑥𝐷𝑦))
3029adantl 482 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → 0 ≤ (𝑥𝐷𝑦))
3129biantrud 532 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝐷𝑦) ≤ 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
3228, 10eqeltrd 2839 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝐷𝑦) ∈ ℝ*)
33 0xr 11022 . . . . . 6 0 ∈ ℝ*
34 xrletri3 12888 . . . . . 6 (((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
3532, 33, 34sylancl 586 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
36 simpr 485 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦)
37 simplr 766 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (𝑥𝐷𝑦) = 0)
38 0re 10977 . . . . . . . . . . . . 13 0 ∈ ℝ
3937, 38eqeltrdi 2847 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (𝑥𝐷𝑦) ∈ ℝ)
4012xrsdsreclb 20645 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑥𝑦) → ((𝑥𝐷𝑦) ∈ ℝ ↔ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
4140ad4ant124 1172 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → ((𝑥𝐷𝑦) ∈ ℝ ↔ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
4239, 41mpbid 231 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ))
4342simpld 495 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → 𝑥 ∈ ℝ)
4443recnd 11003 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → 𝑥 ∈ ℂ)
4542simprd 496 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → 𝑦 ∈ ℝ)
4645recnd 11003 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → 𝑦 ∈ ℂ)
47 rexsub 12967 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 +𝑒 -𝑒𝑦) = (𝑥𝑦))
4842, 47syl 17 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (𝑥 +𝑒 -𝑒𝑦) = (𝑥𝑦))
4928eqeq1d 2740 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝐷𝑦) = 0 ↔ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0))
5049biimpa 477 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0)
5150adantr 481 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0)
52 xneg11 12949 . . . . . . . . . . . . . . 15 (((𝑦 +𝑒 -𝑒𝑥) ∈ ℝ* ∧ 0 ∈ ℝ*) → (-𝑒(𝑦 +𝑒 -𝑒𝑥) = -𝑒0 ↔ (𝑦 +𝑒 -𝑒𝑥) = 0))
536, 33, 52sylancl 586 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒(𝑦 +𝑒 -𝑒𝑥) = -𝑒0 ↔ (𝑦 +𝑒 -𝑒𝑥) = 0))
54 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
554adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒𝑥 ∈ ℝ*)
56 xnegdi 12982 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ* ∧ -𝑒𝑥 ∈ ℝ*) → -𝑒(𝑦 +𝑒 -𝑒𝑥) = (-𝑒𝑦 +𝑒 -𝑒-𝑒𝑥))
5754, 55, 56syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒(𝑦 +𝑒 -𝑒𝑥) = (-𝑒𝑦 +𝑒 -𝑒-𝑒𝑥))
58 xnegneg 12948 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ* → -𝑒-𝑒𝑥 = 𝑥)
5958adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒-𝑒𝑥 = 𝑥)
6059oveq2d 7291 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒𝑦 +𝑒 -𝑒-𝑒𝑥) = (-𝑒𝑦 +𝑒 𝑥))
617adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒𝑦 ∈ ℝ*)
62 simpl 483 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑥 ∈ ℝ*)
63 xaddcom 12974 . . . . . . . . . . . . . . . . 17 ((-𝑒𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (-𝑒𝑦 +𝑒 𝑥) = (𝑥 +𝑒 -𝑒𝑦))
6461, 62, 63syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒𝑦 +𝑒 𝑥) = (𝑥 +𝑒 -𝑒𝑦))
6557, 60, 643eqtrd 2782 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒(𝑦 +𝑒 -𝑒𝑥) = (𝑥 +𝑒 -𝑒𝑦))
66 xneg0 12946 . . . . . . . . . . . . . . . 16 -𝑒0 = 0
6766a1i 11 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒0 = 0)
6865, 67eqeq12d 2754 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒(𝑦 +𝑒 -𝑒𝑥) = -𝑒0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0))
6953, 68bitr3d 280 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑦 +𝑒 -𝑒𝑥) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0))
7069ad2antrr 723 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → ((𝑦 +𝑒 -𝑒𝑥) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0))
71 biidd 261 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → ((𝑥 +𝑒 -𝑒𝑦) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0))
72 eqeq1 2742 . . . . . . . . . . . . . 14 ((𝑦 +𝑒 -𝑒𝑥) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) → ((𝑦 +𝑒 -𝑒𝑥) = 0 ↔ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0))
7372bibi1d 344 . . . . . . . . . . . . 13 ((𝑦 +𝑒 -𝑒𝑥) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) → (((𝑦 +𝑒 -𝑒𝑥) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0) ↔ (if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0)))
74 eqeq1 2742 . . . . . . . . . . . . . 14 ((𝑥 +𝑒 -𝑒𝑦) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) → ((𝑥 +𝑒 -𝑒𝑦) = 0 ↔ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0))
7574bibi1d 344 . . . . . . . . . . . . 13 ((𝑥 +𝑒 -𝑒𝑦) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) → (((𝑥 +𝑒 -𝑒𝑦) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0) ↔ (if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0)))
7673, 75ifboth 4498 . . . . . . . . . . . 12 ((((𝑦 +𝑒 -𝑒𝑥) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0) ∧ ((𝑥 +𝑒 -𝑒𝑦) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0)) → (if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0))
7770, 71, 76syl2anc 584 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0))
7851, 77mpbid 231 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (𝑥 +𝑒 -𝑒𝑦) = 0)
7948, 78eqtr3d 2780 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (𝑥𝑦) = 0)
8044, 46, 79subeq0d 11340 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → 𝑥 = 𝑦)
8136, 80pm2.61dane 3032 . . . . . . 7 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) → 𝑥 = 𝑦)
8281ex 413 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝐷𝑦) = 0 → 𝑥 = 𝑦))
8312xrsdsval 20642 . . . . . . . . . 10 ((𝑦 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦𝐷𝑦) = if(𝑦𝑦, (𝑦 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑦)))
8483anidms 567 . . . . . . . . 9 (𝑦 ∈ ℝ* → (𝑦𝐷𝑦) = if(𝑦𝑦, (𝑦 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑦)))
85 xrleid 12885 . . . . . . . . . 10 (𝑦 ∈ ℝ*𝑦𝑦)
8685iftrued 4467 . . . . . . . . 9 (𝑦 ∈ ℝ* → if(𝑦𝑦, (𝑦 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑦)) = (𝑦 +𝑒 -𝑒𝑦))
87 xnegid 12972 . . . . . . . . 9 (𝑦 ∈ ℝ* → (𝑦 +𝑒 -𝑒𝑦) = 0)
8884, 86, 873eqtrd 2782 . . . . . . . 8 (𝑦 ∈ ℝ* → (𝑦𝐷𝑦) = 0)
8988adantl 482 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦𝐷𝑦) = 0)
90 oveq1 7282 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐷𝑦) = (𝑦𝐷𝑦))
9190eqeq1d 2740 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥𝐷𝑦) = 0 ↔ (𝑦𝐷𝑦) = 0))
9289, 91syl5ibrcom 246 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 = 𝑦 → (𝑥𝐷𝑦) = 0))
9382, 92impbid 211 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
9431, 35, 933bitr2d 307 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝐷𝑦) ≤ 0 ↔ 𝑥 = 𝑦))
9594adantl 482 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → ((𝑥𝐷𝑦) ≤ 0 ↔ 𝑥 = 𝑦))
96 simplrr 775 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑦) ∈ ℝ)
9796leidd 11541 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑦) ≤ (𝑧𝐷𝑦))
98 simpr 485 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → 𝑧 = 𝑥)
9998oveq1d 7290 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑦) = (𝑥𝐷𝑦))
10098oveq1d 7290 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑥) = (𝑥𝐷𝑥))
101 simpll1 1211 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → 𝑥 ∈ ℝ*)
102 oveq12 7284 . . . . . . . . . . . . 13 ((𝑦 = 𝑥𝑦 = 𝑥) → (𝑦𝐷𝑦) = (𝑥𝐷𝑥))
103102anidms 567 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑦𝐷𝑦) = (𝑥𝐷𝑥))
104103eqeq1d 2740 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝑦𝐷𝑦) = 0 ↔ (𝑥𝐷𝑥) = 0))
105104, 88vtoclga 3513 . . . . . . . . . 10 (𝑥 ∈ ℝ* → (𝑥𝐷𝑥) = 0)
106101, 105syl 17 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑥𝐷𝑥) = 0)
107100, 106eqtrd 2778 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑥) = 0)
108107oveq1d 7290 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = (0 + (𝑧𝐷𝑦)))
10996recnd 11003 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑦) ∈ ℂ)
110109addid2d 11176 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (0 + (𝑧𝐷𝑦)) = (𝑧𝐷𝑦))
111108, 110eqtr2d 2779 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑦) = ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
11297, 99, 1113brtr3d 5105 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
113 simpr 485 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → 𝑧 = 𝑦)
114113oveq1d 7290 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑧𝐷𝑥) = (𝑦𝐷𝑥))
115 simplrl 774 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑧𝐷𝑥) ∈ ℝ)
116114, 115eqeltrrd 2840 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑦𝐷𝑥) ∈ ℝ)
117116leidd 11541 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑦𝐷𝑥) ≤ (𝑦𝐷𝑥))
118 simpll1 1211 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → 𝑥 ∈ ℝ*)
119 simpll2 1212 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → 𝑦 ∈ ℝ*)
120 oveq2 7283 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑦𝐷𝑥) = (𝑦𝐷𝑦))
12190, 120eqtr4d 2781 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
122121adantl 482 . . . . . . . 8 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥 = 𝑦) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
123 eqeq2 2750 . . . . . . . . . 10 ((𝑥 +𝑒 -𝑒𝑦) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥)) → (if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = (𝑥 +𝑒 -𝑒𝑦) ↔ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥))))
124 eqeq2 2750 . . . . . . . . . 10 ((𝑦 +𝑒 -𝑒𝑥) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥)) → (if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = (𝑦 +𝑒 -𝑒𝑥) ↔ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥))))
125 xrleloe 12878 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
126125adantr 481 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
127 simpr 485 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → 𝑥𝑦)
128127neneqd 2948 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → ¬ 𝑥 = 𝑦)
129 biorf 934 . . . . . . . . . . . . . . . 16 𝑥 = 𝑦 → (𝑥 < 𝑦 ↔ (𝑥 = 𝑦𝑥 < 𝑦)))
130 orcom 867 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑦𝑥 < 𝑦) ↔ (𝑥 < 𝑦𝑥 = 𝑦))
131129, 130bitrdi 287 . . . . . . . . . . . . . . 15 𝑥 = 𝑦 → (𝑥 < 𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
132128, 131syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥 < 𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
133 xrltnle 11042 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
134133adantr 481 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
135126, 132, 1343bitr2d 307 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥𝑦 ↔ ¬ 𝑦𝑥))
136135con2bid 355 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑦𝑥 ↔ ¬ 𝑥𝑦))
137136biimpa 477 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) ∧ 𝑦𝑥) → ¬ 𝑥𝑦)
138137iffalsed 4470 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) ∧ 𝑦𝑥) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = (𝑥 +𝑒 -𝑒𝑦))
139135biimpar 478 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) ∧ ¬ 𝑦𝑥) → 𝑥𝑦)
140139iftrued 4467 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) ∧ ¬ 𝑦𝑥) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = (𝑦 +𝑒 -𝑒𝑥))
141123, 124, 138, 140ifbothda 4497 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥)))
14228adantr 481 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥𝐷𝑦) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
14312xrsdsval 20642 . . . . . . . . . . 11 ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑦𝐷𝑥) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥)))
144143ancoms 459 . . . . . . . . . 10 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦𝐷𝑥) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥)))
145144adantr 481 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑦𝐷𝑥) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥)))
146141, 142, 1453eqtr4d 2788 . . . . . . . 8 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
147122, 146pm2.61dane 3032 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
148118, 119, 147syl2anc 584 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
149113oveq1d 7290 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑧𝐷𝑦) = (𝑦𝐷𝑦))
150119, 88syl 17 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑦𝐷𝑦) = 0)
151149, 150eqtrd 2778 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑧𝐷𝑦) = 0)
152114, 151oveq12d 7293 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((𝑦𝐷𝑥) + 0))
153116recnd 11003 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑦𝐷𝑥) ∈ ℂ)
154153addid1d 11175 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → ((𝑦𝐷𝑥) + 0) = (𝑦𝐷𝑥))
155152, 154eqtrd 2778 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = (𝑦𝐷𝑥))
156117, 148, 1553brtr4d 5106 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
157 simplrl 774 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧𝐷𝑥) ∈ ℝ)
158 simpll3 1213 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑧 ∈ ℝ*)
159 simpll1 1211 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑥 ∈ ℝ*)
160 simprl 768 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑧𝑥)
16112xrsdsreclb 20645 . . . . . . . . . . 11 ((𝑧 ∈ ℝ*𝑥 ∈ ℝ*𝑧𝑥) → ((𝑧𝐷𝑥) ∈ ℝ ↔ (𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ)))
162158, 159, 160, 161syl3anc 1370 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → ((𝑧𝐷𝑥) ∈ ℝ ↔ (𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ)))
163157, 162mpbid 231 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ))
164163simprd 496 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑥 ∈ ℝ)
165164recnd 11003 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑥 ∈ ℂ)
166 simplrr 775 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧𝐷𝑦) ∈ ℝ)
167 simpll2 1212 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑦 ∈ ℝ*)
168 simprr 770 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑧𝑦)
16912xrsdsreclb 20645 . . . . . . . . . . 11 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*𝑧𝑦) → ((𝑧𝐷𝑦) ∈ ℝ ↔ (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
170158, 167, 168, 169syl3anc 1370 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → ((𝑧𝐷𝑦) ∈ ℝ ↔ (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
171166, 170mpbid 231 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ))
172171simprd 496 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑦 ∈ ℝ)
173172recnd 11003 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑦 ∈ ℂ)
174163simpld 495 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑧 ∈ ℝ)
175174recnd 11003 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑧 ∈ ℂ)
176165, 173, 175abs3difd 15172 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (abs‘(𝑥𝑦)) ≤ ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝑦))))
17712xrsdsreval 20643 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝐷𝑦) = (abs‘(𝑥𝑦)))
178164, 172, 177syl2anc 584 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑥𝐷𝑦) = (abs‘(𝑥𝑦)))
17912xrsdsreval 20643 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑧𝐷𝑥) = (abs‘(𝑧𝑥)))
180163, 179syl 17 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧𝐷𝑥) = (abs‘(𝑧𝑥)))
181175, 165abssubd 15165 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (abs‘(𝑧𝑥)) = (abs‘(𝑥𝑧)))
182180, 181eqtrd 2778 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧𝐷𝑥) = (abs‘(𝑥𝑧)))
18312xrsdsreval 20643 . . . . . . . 8 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧𝐷𝑦) = (abs‘(𝑧𝑦)))
184171, 183syl 17 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧𝐷𝑦) = (abs‘(𝑧𝑦)))
185182, 184oveq12d 7293 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝑦))))
186176, 178, 1853brtr4d 5106 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
187112, 156, 186pm2.61da2ne 3033 . . . 4 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
1881873adant1 1129 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
1892, 16, 30, 95, 188isxmet2d 23480 . 2 (⊤ → 𝐷 ∈ (∞Met‘ℝ*))
190189mptru 1546 1 𝐷 ∈ (∞Met‘ℝ*)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wtru 1540  wcel 2106  wne 2943  wral 3064  Vcvv 3432  ifcif 4459   class class class wbr 5074   × cxp 5587  wf 6429  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871   + caddc 10874  *cxr 11008   < clt 11009  cle 11010  cmin 11205  -𝑒cxne 12845   +𝑒 cxad 12846  abscabs 14945  distcds 16971  *𝑠cxrs 17211  ∞Metcxmet 20582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-xneg 12848  df-xadd 12849  df-icc 13086  df-fz 13240  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-tset 16981  df-ple 16982  df-ds 16984  df-xrs 17213  df-xmet 20590
This theorem is referenced by:  xrsdsre  23973  xrsblre  23974  xrsmopn  23975  metdcnlem  23999  xmetdcn2  24000  xmetdcn  24001  metdscn  24019  metdscn2  24020
  Copyright terms: Public domain W3C validator