MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsxmet Structured version   Visualization version   GIF version

Theorem xrsxmet 23420
Description: The metric on the extended reals is a proper extended metric. (Contributed by Mario Carneiro, 4-Sep-2015.)
Hypothesis
Ref Expression
xrsxmet.1 𝐷 = (dist‘ℝ*𝑠)
Assertion
Ref Expression
xrsxmet 𝐷 ∈ (∞Met‘ℝ*)

Proof of Theorem xrsxmet
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrex 12389 . . . 4 * ∈ V
21a1i 11 . . 3 (⊤ → ℝ* ∈ V)
3 id 22 . . . . . . . 8 (𝑦 ∈ ℝ*𝑦 ∈ ℝ*)
4 xnegcl 12609 . . . . . . . 8 (𝑥 ∈ ℝ* → -𝑒𝑥 ∈ ℝ*)
5 xaddcl 12635 . . . . . . . 8 ((𝑦 ∈ ℝ* ∧ -𝑒𝑥 ∈ ℝ*) → (𝑦 +𝑒 -𝑒𝑥) ∈ ℝ*)
63, 4, 5syl2anr 598 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 +𝑒 -𝑒𝑥) ∈ ℝ*)
7 xnegcl 12609 . . . . . . . 8 (𝑦 ∈ ℝ* → -𝑒𝑦 ∈ ℝ*)
8 xaddcl 12635 . . . . . . . 8 ((𝑥 ∈ ℝ* ∧ -𝑒𝑦 ∈ ℝ*) → (𝑥 +𝑒 -𝑒𝑦) ∈ ℝ*)
97, 8sylan2 594 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 +𝑒 -𝑒𝑦) ∈ ℝ*)
106, 9ifcld 4515 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) ∈ ℝ*)
1110rgen2 3206 . . . . 5 𝑥 ∈ ℝ*𝑦 ∈ ℝ* if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) ∈ ℝ*
12 xrsxmet.1 . . . . . . 7 𝐷 = (dist‘ℝ*𝑠)
1312xrsds 20591 . . . . . 6 𝐷 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
1413fmpo 7769 . . . . 5 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) ∈ ℝ*𝐷:(ℝ* × ℝ*)⟶ℝ*)
1511, 14mpbi 232 . . . 4 𝐷:(ℝ* × ℝ*)⟶ℝ*
1615a1i 11 . . 3 (⊤ → 𝐷:(ℝ* × ℝ*)⟶ℝ*)
17 breq2 5073 . . . . . 6 ((𝑦 +𝑒 -𝑒𝑥) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) → (0 ≤ (𝑦 +𝑒 -𝑒𝑥) ↔ 0 ≤ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))))
18 breq2 5073 . . . . . 6 ((𝑥 +𝑒 -𝑒𝑦) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) → (0 ≤ (𝑥 +𝑒 -𝑒𝑦) ↔ 0 ≤ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))))
19 xsubge0 12657 . . . . . . . 8 ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (0 ≤ (𝑦 +𝑒 -𝑒𝑥) ↔ 𝑥𝑦))
2019ancoms 461 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (0 ≤ (𝑦 +𝑒 -𝑒𝑥) ↔ 𝑥𝑦))
2120biimpar 480 . . . . . 6 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → 0 ≤ (𝑦 +𝑒 -𝑒𝑥))
22 xrletri 12549 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝑦𝑦𝑥))
2322orcanai 999 . . . . . . 7 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥𝑦) → 𝑦𝑥)
24 xsubge0 12657 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (0 ≤ (𝑥 +𝑒 -𝑒𝑦) ↔ 𝑦𝑥))
2524biimpar 480 . . . . . . 7 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑦𝑥) → 0 ≤ (𝑥 +𝑒 -𝑒𝑦))
2623, 25syldan 593 . . . . . 6 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥𝑦) → 0 ≤ (𝑥 +𝑒 -𝑒𝑦))
2717, 18, 21, 26ifbothda 4507 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 0 ≤ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
2812xrsdsval 20592 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝐷𝑦) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
2927, 28breqtrrd 5097 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 0 ≤ (𝑥𝐷𝑦))
3029adantl 484 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → 0 ≤ (𝑥𝐷𝑦))
3129biantrud 534 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝐷𝑦) ≤ 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
3228, 10eqeltrd 2916 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝐷𝑦) ∈ ℝ*)
33 0xr 10691 . . . . . 6 0 ∈ ℝ*
34 xrletri3 12550 . . . . . 6 (((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
3532, 33, 34sylancl 588 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
36 simpr 487 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦)
37 simplr 767 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (𝑥𝐷𝑦) = 0)
38 0re 10646 . . . . . . . . . . . . 13 0 ∈ ℝ
3937, 38eqeltrdi 2924 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (𝑥𝐷𝑦) ∈ ℝ)
4012xrsdsreclb 20595 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑥𝑦) → ((𝑥𝐷𝑦) ∈ ℝ ↔ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
4140ad4ant124 1169 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → ((𝑥𝐷𝑦) ∈ ℝ ↔ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
4239, 41mpbid 234 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ))
4342simpld 497 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → 𝑥 ∈ ℝ)
4443recnd 10672 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → 𝑥 ∈ ℂ)
4542simprd 498 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → 𝑦 ∈ ℝ)
4645recnd 10672 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → 𝑦 ∈ ℂ)
47 rexsub 12629 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 +𝑒 -𝑒𝑦) = (𝑥𝑦))
4842, 47syl 17 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (𝑥 +𝑒 -𝑒𝑦) = (𝑥𝑦))
4928eqeq1d 2826 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝐷𝑦) = 0 ↔ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0))
5049biimpa 479 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0)
5150adantr 483 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0)
52 xneg11 12611 . . . . . . . . . . . . . . 15 (((𝑦 +𝑒 -𝑒𝑥) ∈ ℝ* ∧ 0 ∈ ℝ*) → (-𝑒(𝑦 +𝑒 -𝑒𝑥) = -𝑒0 ↔ (𝑦 +𝑒 -𝑒𝑥) = 0))
536, 33, 52sylancl 588 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒(𝑦 +𝑒 -𝑒𝑥) = -𝑒0 ↔ (𝑦 +𝑒 -𝑒𝑥) = 0))
54 simpr 487 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
554adantr 483 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒𝑥 ∈ ℝ*)
56 xnegdi 12644 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ* ∧ -𝑒𝑥 ∈ ℝ*) → -𝑒(𝑦 +𝑒 -𝑒𝑥) = (-𝑒𝑦 +𝑒 -𝑒-𝑒𝑥))
5754, 55, 56syl2anc 586 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒(𝑦 +𝑒 -𝑒𝑥) = (-𝑒𝑦 +𝑒 -𝑒-𝑒𝑥))
58 xnegneg 12610 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ* → -𝑒-𝑒𝑥 = 𝑥)
5958adantr 483 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒-𝑒𝑥 = 𝑥)
6059oveq2d 7175 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒𝑦 +𝑒 -𝑒-𝑒𝑥) = (-𝑒𝑦 +𝑒 𝑥))
617adantl 484 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒𝑦 ∈ ℝ*)
62 simpl 485 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑥 ∈ ℝ*)
63 xaddcom 12636 . . . . . . . . . . . . . . . . 17 ((-𝑒𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (-𝑒𝑦 +𝑒 𝑥) = (𝑥 +𝑒 -𝑒𝑦))
6461, 62, 63syl2anc 586 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒𝑦 +𝑒 𝑥) = (𝑥 +𝑒 -𝑒𝑦))
6557, 60, 643eqtrd 2863 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒(𝑦 +𝑒 -𝑒𝑥) = (𝑥 +𝑒 -𝑒𝑦))
66 xneg0 12608 . . . . . . . . . . . . . . . 16 -𝑒0 = 0
6766a1i 11 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒0 = 0)
6865, 67eqeq12d 2840 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒(𝑦 +𝑒 -𝑒𝑥) = -𝑒0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0))
6953, 68bitr3d 283 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑦 +𝑒 -𝑒𝑥) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0))
7069ad2antrr 724 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → ((𝑦 +𝑒 -𝑒𝑥) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0))
71 biidd 264 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → ((𝑥 +𝑒 -𝑒𝑦) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0))
72 eqeq1 2828 . . . . . . . . . . . . . 14 ((𝑦 +𝑒 -𝑒𝑥) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) → ((𝑦 +𝑒 -𝑒𝑥) = 0 ↔ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0))
7372bibi1d 346 . . . . . . . . . . . . 13 ((𝑦 +𝑒 -𝑒𝑥) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) → (((𝑦 +𝑒 -𝑒𝑥) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0) ↔ (if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0)))
74 eqeq1 2828 . . . . . . . . . . . . . 14 ((𝑥 +𝑒 -𝑒𝑦) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) → ((𝑥 +𝑒 -𝑒𝑦) = 0 ↔ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0))
7574bibi1d 346 . . . . . . . . . . . . 13 ((𝑥 +𝑒 -𝑒𝑦) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) → (((𝑥 +𝑒 -𝑒𝑦) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0) ↔ (if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0)))
7673, 75ifboth 4508 . . . . . . . . . . . 12 ((((𝑦 +𝑒 -𝑒𝑥) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0) ∧ ((𝑥 +𝑒 -𝑒𝑦) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0)) → (if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0))
7770, 71, 76syl2anc 586 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0))
7851, 77mpbid 234 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (𝑥 +𝑒 -𝑒𝑦) = 0)
7948, 78eqtr3d 2861 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (𝑥𝑦) = 0)
8044, 46, 79subeq0d 11008 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → 𝑥 = 𝑦)
8136, 80pm2.61dane 3107 . . . . . . 7 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) → 𝑥 = 𝑦)
8281ex 415 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝐷𝑦) = 0 → 𝑥 = 𝑦))
8312xrsdsval 20592 . . . . . . . . . 10 ((𝑦 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦𝐷𝑦) = if(𝑦𝑦, (𝑦 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑦)))
8483anidms 569 . . . . . . . . 9 (𝑦 ∈ ℝ* → (𝑦𝐷𝑦) = if(𝑦𝑦, (𝑦 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑦)))
85 xrleid 12547 . . . . . . . . . 10 (𝑦 ∈ ℝ*𝑦𝑦)
8685iftrued 4478 . . . . . . . . 9 (𝑦 ∈ ℝ* → if(𝑦𝑦, (𝑦 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑦)) = (𝑦 +𝑒 -𝑒𝑦))
87 xnegid 12634 . . . . . . . . 9 (𝑦 ∈ ℝ* → (𝑦 +𝑒 -𝑒𝑦) = 0)
8884, 86, 873eqtrd 2863 . . . . . . . 8 (𝑦 ∈ ℝ* → (𝑦𝐷𝑦) = 0)
8988adantl 484 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦𝐷𝑦) = 0)
90 oveq1 7166 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐷𝑦) = (𝑦𝐷𝑦))
9190eqeq1d 2826 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥𝐷𝑦) = 0 ↔ (𝑦𝐷𝑦) = 0))
9289, 91syl5ibrcom 249 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 = 𝑦 → (𝑥𝐷𝑦) = 0))
9382, 92impbid 214 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
9431, 35, 933bitr2d 309 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝐷𝑦) ≤ 0 ↔ 𝑥 = 𝑦))
9594adantl 484 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → ((𝑥𝐷𝑦) ≤ 0 ↔ 𝑥 = 𝑦))
96 simplrr 776 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑦) ∈ ℝ)
9796leidd 11209 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑦) ≤ (𝑧𝐷𝑦))
98 simpr 487 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → 𝑧 = 𝑥)
9998oveq1d 7174 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑦) = (𝑥𝐷𝑦))
10098oveq1d 7174 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑥) = (𝑥𝐷𝑥))
101 simpll1 1208 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → 𝑥 ∈ ℝ*)
102 oveq12 7168 . . . . . . . . . . . . 13 ((𝑦 = 𝑥𝑦 = 𝑥) → (𝑦𝐷𝑦) = (𝑥𝐷𝑥))
103102anidms 569 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑦𝐷𝑦) = (𝑥𝐷𝑥))
104103eqeq1d 2826 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝑦𝐷𝑦) = 0 ↔ (𝑥𝐷𝑥) = 0))
105104, 88vtoclga 3577 . . . . . . . . . 10 (𝑥 ∈ ℝ* → (𝑥𝐷𝑥) = 0)
106101, 105syl 17 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑥𝐷𝑥) = 0)
107100, 106eqtrd 2859 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑥) = 0)
108107oveq1d 7174 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = (0 + (𝑧𝐷𝑦)))
10996recnd 10672 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑦) ∈ ℂ)
110109addid2d 10844 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (0 + (𝑧𝐷𝑦)) = (𝑧𝐷𝑦))
111108, 110eqtr2d 2860 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑦) = ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
11297, 99, 1113brtr3d 5100 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
113 simpr 487 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → 𝑧 = 𝑦)
114113oveq1d 7174 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑧𝐷𝑥) = (𝑦𝐷𝑥))
115 simplrl 775 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑧𝐷𝑥) ∈ ℝ)
116114, 115eqeltrrd 2917 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑦𝐷𝑥) ∈ ℝ)
117116leidd 11209 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑦𝐷𝑥) ≤ (𝑦𝐷𝑥))
118 simpll1 1208 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → 𝑥 ∈ ℝ*)
119 simpll2 1209 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → 𝑦 ∈ ℝ*)
120 oveq2 7167 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑦𝐷𝑥) = (𝑦𝐷𝑦))
12190, 120eqtr4d 2862 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
122121adantl 484 . . . . . . . 8 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥 = 𝑦) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
123 eqeq2 2836 . . . . . . . . . 10 ((𝑥 +𝑒 -𝑒𝑦) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥)) → (if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = (𝑥 +𝑒 -𝑒𝑦) ↔ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥))))
124 eqeq2 2836 . . . . . . . . . 10 ((𝑦 +𝑒 -𝑒𝑥) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥)) → (if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = (𝑦 +𝑒 -𝑒𝑥) ↔ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥))))
125 xrleloe 12540 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
126125adantr 483 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
127 simpr 487 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → 𝑥𝑦)
128127neneqd 3024 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → ¬ 𝑥 = 𝑦)
129 biorf 933 . . . . . . . . . . . . . . . 16 𝑥 = 𝑦 → (𝑥 < 𝑦 ↔ (𝑥 = 𝑦𝑥 < 𝑦)))
130 orcom 866 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑦𝑥 < 𝑦) ↔ (𝑥 < 𝑦𝑥 = 𝑦))
131129, 130syl6bb 289 . . . . . . . . . . . . . . 15 𝑥 = 𝑦 → (𝑥 < 𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
132128, 131syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥 < 𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
133 xrltnle 10711 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
134133adantr 483 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
135126, 132, 1343bitr2d 309 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥𝑦 ↔ ¬ 𝑦𝑥))
136135con2bid 357 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑦𝑥 ↔ ¬ 𝑥𝑦))
137136biimpa 479 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) ∧ 𝑦𝑥) → ¬ 𝑥𝑦)
138137iffalsed 4481 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) ∧ 𝑦𝑥) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = (𝑥 +𝑒 -𝑒𝑦))
139135biimpar 480 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) ∧ ¬ 𝑦𝑥) → 𝑥𝑦)
140139iftrued 4478 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) ∧ ¬ 𝑦𝑥) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = (𝑦 +𝑒 -𝑒𝑥))
141123, 124, 138, 140ifbothda 4507 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥)))
14228adantr 483 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥𝐷𝑦) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
14312xrsdsval 20592 . . . . . . . . . . 11 ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑦𝐷𝑥) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥)))
144143ancoms 461 . . . . . . . . . 10 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦𝐷𝑥) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥)))
145144adantr 483 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑦𝐷𝑥) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥)))
146141, 142, 1453eqtr4d 2869 . . . . . . . 8 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
147122, 146pm2.61dane 3107 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
148118, 119, 147syl2anc 586 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
149113oveq1d 7174 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑧𝐷𝑦) = (𝑦𝐷𝑦))
150119, 88syl 17 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑦𝐷𝑦) = 0)
151149, 150eqtrd 2859 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑧𝐷𝑦) = 0)
152114, 151oveq12d 7177 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((𝑦𝐷𝑥) + 0))
153116recnd 10672 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑦𝐷𝑥) ∈ ℂ)
154153addid1d 10843 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → ((𝑦𝐷𝑥) + 0) = (𝑦𝐷𝑥))
155152, 154eqtrd 2859 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = (𝑦𝐷𝑥))
156117, 148, 1553brtr4d 5101 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
157 simplrl 775 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧𝐷𝑥) ∈ ℝ)
158 simpll3 1210 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑧 ∈ ℝ*)
159 simpll1 1208 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑥 ∈ ℝ*)
160 simprl 769 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑧𝑥)
16112xrsdsreclb 20595 . . . . . . . . . . 11 ((𝑧 ∈ ℝ*𝑥 ∈ ℝ*𝑧𝑥) → ((𝑧𝐷𝑥) ∈ ℝ ↔ (𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ)))
162158, 159, 160, 161syl3anc 1367 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → ((𝑧𝐷𝑥) ∈ ℝ ↔ (𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ)))
163157, 162mpbid 234 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ))
164163simprd 498 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑥 ∈ ℝ)
165164recnd 10672 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑥 ∈ ℂ)
166 simplrr 776 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧𝐷𝑦) ∈ ℝ)
167 simpll2 1209 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑦 ∈ ℝ*)
168 simprr 771 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑧𝑦)
16912xrsdsreclb 20595 . . . . . . . . . . 11 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*𝑧𝑦) → ((𝑧𝐷𝑦) ∈ ℝ ↔ (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
170158, 167, 168, 169syl3anc 1367 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → ((𝑧𝐷𝑦) ∈ ℝ ↔ (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
171166, 170mpbid 234 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ))
172171simprd 498 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑦 ∈ ℝ)
173172recnd 10672 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑦 ∈ ℂ)
174163simpld 497 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑧 ∈ ℝ)
175174recnd 10672 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑧 ∈ ℂ)
176165, 173, 175abs3difd 14823 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (abs‘(𝑥𝑦)) ≤ ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝑦))))
17712xrsdsreval 20593 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝐷𝑦) = (abs‘(𝑥𝑦)))
178164, 172, 177syl2anc 586 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑥𝐷𝑦) = (abs‘(𝑥𝑦)))
17912xrsdsreval 20593 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑧𝐷𝑥) = (abs‘(𝑧𝑥)))
180163, 179syl 17 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧𝐷𝑥) = (abs‘(𝑧𝑥)))
181175, 165abssubd 14816 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (abs‘(𝑧𝑥)) = (abs‘(𝑥𝑧)))
182180, 181eqtrd 2859 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧𝐷𝑥) = (abs‘(𝑥𝑧)))
18312xrsdsreval 20593 . . . . . . . 8 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧𝐷𝑦) = (abs‘(𝑧𝑦)))
184171, 183syl 17 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧𝐷𝑦) = (abs‘(𝑧𝑦)))
185182, 184oveq12d 7177 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝑦))))
186176, 178, 1853brtr4d 5101 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
187112, 156, 186pm2.61da2ne 3108 . . . 4 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
1881873adant1 1126 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
1892, 16, 30, 95, 188isxmet2d 22940 . 2 (⊤ → 𝐷 ∈ (∞Met‘ℝ*))
190189mptru 1543 1 𝐷 ∈ (∞Met‘ℝ*)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wa 398  wo 843  w3a 1083   = wceq 1536  wtru 1537  wcel 2113  wne 3019  wral 3141  Vcvv 3497  ifcif 4470   class class class wbr 5069   × cxp 5556  wf 6354  cfv 6358  (class class class)co 7159  cr 10539  0cc0 10540   + caddc 10543  *cxr 10677   < clt 10678  cle 10679  cmin 10873  -𝑒cxne 12507   +𝑒 cxad 12508  abscabs 14596  distcds 16577  *𝑠cxrs 16776  ∞Metcxmet 20533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-rp 12393  df-xneg 12510  df-xadd 12511  df-icc 12748  df-fz 12896  df-seq 13373  df-exp 13433  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-plusg 16581  df-mulr 16582  df-tset 16587  df-ple 16588  df-ds 16590  df-xrs 16778  df-xmet 20541
This theorem is referenced by:  xrsdsre  23421  xrsblre  23422  xrsmopn  23423  metdcnlem  23447  xmetdcn2  23448  xmetdcn  23449  metdscn  23467  metdscn2  23468
  Copyright terms: Public domain W3C validator