Step | Hyp | Ref
| Expression |
1 | | oveq1 7415 |
. . 3
⊢ (𝑎 = 𝑐 → (𝑎 +no suc 𝑏) = (𝑐 +no suc 𝑏)) |
2 | | oveq1 7415 |
. . . 4
⊢ (𝑎 = 𝑐 → (𝑎 +no 𝑏) = (𝑐 +no 𝑏)) |
3 | | suceq 6430 |
. . . 4
⊢ ((𝑎 +no 𝑏) = (𝑐 +no 𝑏) → suc (𝑎 +no 𝑏) = suc (𝑐 +no 𝑏)) |
4 | 2, 3 | syl 17 |
. . 3
⊢ (𝑎 = 𝑐 → suc (𝑎 +no 𝑏) = suc (𝑐 +no 𝑏)) |
5 | 1, 4 | eqeq12d 2748 |
. 2
⊢ (𝑎 = 𝑐 → ((𝑎 +no suc 𝑏) = suc (𝑎 +no 𝑏) ↔ (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏))) |
6 | | suceq 6430 |
. . . 4
⊢ (𝑏 = 𝑑 → suc 𝑏 = suc 𝑑) |
7 | 6 | oveq2d 7424 |
. . 3
⊢ (𝑏 = 𝑑 → (𝑐 +no suc 𝑏) = (𝑐 +no suc 𝑑)) |
8 | | oveq2 7416 |
. . . 4
⊢ (𝑏 = 𝑑 → (𝑐 +no 𝑏) = (𝑐 +no 𝑑)) |
9 | | suceq 6430 |
. . . 4
⊢ ((𝑐 +no 𝑏) = (𝑐 +no 𝑑) → suc (𝑐 +no 𝑏) = suc (𝑐 +no 𝑑)) |
10 | 8, 9 | syl 17 |
. . 3
⊢ (𝑏 = 𝑑 → suc (𝑐 +no 𝑏) = suc (𝑐 +no 𝑑)) |
11 | 7, 10 | eqeq12d 2748 |
. 2
⊢ (𝑏 = 𝑑 → ((𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏) ↔ (𝑐 +no suc 𝑑) = suc (𝑐 +no 𝑑))) |
12 | | oveq1 7415 |
. . 3
⊢ (𝑎 = 𝑐 → (𝑎 +no suc 𝑑) = (𝑐 +no suc 𝑑)) |
13 | | oveq1 7415 |
. . . 4
⊢ (𝑎 = 𝑐 → (𝑎 +no 𝑑) = (𝑐 +no 𝑑)) |
14 | | suceq 6430 |
. . . 4
⊢ ((𝑎 +no 𝑑) = (𝑐 +no 𝑑) → suc (𝑎 +no 𝑑) = suc (𝑐 +no 𝑑)) |
15 | 13, 14 | syl 17 |
. . 3
⊢ (𝑎 = 𝑐 → suc (𝑎 +no 𝑑) = suc (𝑐 +no 𝑑)) |
16 | 12, 15 | eqeq12d 2748 |
. 2
⊢ (𝑎 = 𝑐 → ((𝑎 +no suc 𝑑) = suc (𝑎 +no 𝑑) ↔ (𝑐 +no suc 𝑑) = suc (𝑐 +no 𝑑))) |
17 | | oveq1 7415 |
. . 3
⊢ (𝑎 = 𝐴 → (𝑎 +no suc 𝑏) = (𝐴 +no suc 𝑏)) |
18 | | oveq1 7415 |
. . . 4
⊢ (𝑎 = 𝐴 → (𝑎 +no 𝑏) = (𝐴 +no 𝑏)) |
19 | | suceq 6430 |
. . . 4
⊢ ((𝑎 +no 𝑏) = (𝐴 +no 𝑏) → suc (𝑎 +no 𝑏) = suc (𝐴 +no 𝑏)) |
20 | 18, 19 | syl 17 |
. . 3
⊢ (𝑎 = 𝐴 → suc (𝑎 +no 𝑏) = suc (𝐴 +no 𝑏)) |
21 | 17, 20 | eqeq12d 2748 |
. 2
⊢ (𝑎 = 𝐴 → ((𝑎 +no suc 𝑏) = suc (𝑎 +no 𝑏) ↔ (𝐴 +no suc 𝑏) = suc (𝐴 +no 𝑏))) |
22 | | suceq 6430 |
. . . 4
⊢ (𝑏 = 𝐵 → suc 𝑏 = suc 𝐵) |
23 | 22 | oveq2d 7424 |
. . 3
⊢ (𝑏 = 𝐵 → (𝐴 +no suc 𝑏) = (𝐴 +no suc 𝐵)) |
24 | | oveq2 7416 |
. . . 4
⊢ (𝑏 = 𝐵 → (𝐴 +no 𝑏) = (𝐴 +no 𝐵)) |
25 | | suceq 6430 |
. . . 4
⊢ ((𝐴 +no 𝑏) = (𝐴 +no 𝐵) → suc (𝐴 +no 𝑏) = suc (𝐴 +no 𝐵)) |
26 | 24, 25 | syl 17 |
. . 3
⊢ (𝑏 = 𝐵 → suc (𝐴 +no 𝑏) = suc (𝐴 +no 𝐵)) |
27 | 23, 26 | eqeq12d 2748 |
. 2
⊢ (𝑏 = 𝐵 → ((𝐴 +no suc 𝑏) = suc (𝐴 +no 𝑏) ↔ (𝐴 +no suc 𝐵) = suc (𝐴 +no 𝐵))) |
28 | | simp2 1137 |
. . . 4
⊢
((∀𝑐 ∈
𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +no suc 𝑑) = suc (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no suc 𝑑) = suc (𝑎 +no 𝑑)) → ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏)) |
29 | 28 | a1i 11 |
. . 3
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) →
((∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +no suc 𝑑) = suc (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no suc 𝑑) = suc (𝑎 +no 𝑑)) → ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏))) |
30 | | df-suc 6370 |
. . . . . . . . . . . 12
⊢ suc 𝑏 = (𝑏 ∪ {𝑏}) |
31 | 30 | a1i 11 |
. . . . . . . . . . 11
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏)) ∧ 𝑥 ∈ On) → suc 𝑏 = (𝑏 ∪ {𝑏})) |
32 | 31 | raleqdv 3325 |
. . . . . . . . . 10
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏)) ∧ 𝑥 ∈ On) → (∀𝑑 ∈ suc 𝑏(𝑎 +no 𝑑) ∈ 𝑥 ↔ ∀𝑑 ∈ (𝑏 ∪ {𝑏})(𝑎 +no 𝑑) ∈ 𝑥)) |
33 | | vex 3478 |
. . . . . . . . . . . . 13
⊢ 𝑏 ∈ V |
34 | 33 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏)) ∧ 𝑥 ∈ On) → 𝑏 ∈ V) |
35 | | oveq2 7416 |
. . . . . . . . . . . . . 14
⊢ (𝑑 = 𝑏 → (𝑎 +no 𝑑) = (𝑎 +no 𝑏)) |
36 | 35 | eleq1d 2818 |
. . . . . . . . . . . . 13
⊢ (𝑑 = 𝑏 → ((𝑎 +no 𝑑) ∈ 𝑥 ↔ (𝑎 +no 𝑏) ∈ 𝑥)) |
37 | 36 | ralunsn 4894 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ V → (∀𝑑 ∈ (𝑏 ∪ {𝑏})(𝑎 +no 𝑑) ∈ 𝑥 ↔ (∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ∧ (𝑎 +no 𝑏) ∈ 𝑥))) |
38 | 34, 37 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏)) ∧ 𝑥 ∈ On) → (∀𝑑 ∈ (𝑏 ∪ {𝑏})(𝑎 +no 𝑑) ∈ 𝑥 ↔ (∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ∧ (𝑎 +no 𝑏) ∈ 𝑥))) |
39 | 38 | biancomd 464 |
. . . . . . . . . 10
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏)) ∧ 𝑥 ∈ On) → (∀𝑑 ∈ (𝑏 ∪ {𝑏})(𝑎 +no 𝑑) ∈ 𝑥 ↔ ((𝑎 +no 𝑏) ∈ 𝑥 ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ 𝑥))) |
40 | 32, 39 | bitrd 278 |
. . . . . . . . 9
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏)) ∧ 𝑥 ∈ On) → (∀𝑑 ∈ suc 𝑏(𝑎 +no 𝑑) ∈ 𝑥 ↔ ((𝑎 +no 𝑏) ∈ 𝑥 ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ 𝑥))) |
41 | | nfv 1917 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑐(𝑎 ∈ On ∧ 𝑏 ∈ On) |
42 | | nfra1 3281 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑐∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏) |
43 | 41, 42 | nfan 1902 |
. . . . . . . . . . 11
⊢
Ⅎ𝑐((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏)) |
44 | | nfv 1917 |
. . . . . . . . . . 11
⊢
Ⅎ𝑐 𝑥 ∈ On |
45 | 43, 44 | nfan 1902 |
. . . . . . . . . 10
⊢
Ⅎ𝑐(((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏)) ∧ 𝑥 ∈ On) |
46 | | simplr 767 |
. . . . . . . . . . . 12
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏)) ∧ 𝑥 ∈ On) → ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏)) |
47 | 46 | r19.21bi 3248 |
. . . . . . . . . . 11
⊢
(((((𝑎 ∈ On
∧ 𝑏 ∈ On) ∧
∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏)) ∧ 𝑥 ∈ On) ∧ 𝑐 ∈ 𝑎) → (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏)) |
48 | 47 | eleq1d 2818 |
. . . . . . . . . 10
⊢
(((((𝑎 ∈ On
∧ 𝑏 ∈ On) ∧
∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏)) ∧ 𝑥 ∈ On) ∧ 𝑐 ∈ 𝑎) → ((𝑐 +no suc 𝑏) ∈ 𝑥 ↔ suc (𝑐 +no 𝑏) ∈ 𝑥)) |
49 | 45, 48 | ralbida 3267 |
. . . . . . . . 9
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏)) ∧ 𝑥 ∈ On) → (∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) ∈ 𝑥 ↔ ∀𝑐 ∈ 𝑎 suc (𝑐 +no 𝑏) ∈ 𝑥)) |
50 | 40, 49 | anbi12d 631 |
. . . . . . . 8
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏)) ∧ 𝑥 ∈ On) → ((∀𝑑 ∈ suc 𝑏(𝑎 +no 𝑑) ∈ 𝑥 ∧ ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) ∈ 𝑥) ↔ (((𝑎 +no 𝑏) ∈ 𝑥 ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ 𝑥) ∧ ∀𝑐 ∈ 𝑎 suc (𝑐 +no 𝑏) ∈ 𝑥))) |
51 | | anass 469 |
. . . . . . . . 9
⊢ ((((𝑎 +no 𝑏) ∈ 𝑥 ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ 𝑥) ∧ ∀𝑐 ∈ 𝑎 suc (𝑐 +no 𝑏) ∈ 𝑥) ↔ ((𝑎 +no 𝑏) ∈ 𝑥 ∧ (∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ∧ ∀𝑐 ∈ 𝑎 suc (𝑐 +no 𝑏) ∈ 𝑥))) |
52 | | simpll3 1214 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑎 +no 𝑏) ∈ 𝑥) ∧ 𝑑 ∈ 𝑏) → 𝑥 ∈ On) |
53 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑎 +no 𝑏) ∈ 𝑥) ∧ 𝑑 ∈ 𝑏) → 𝑑 ∈ 𝑏) |
54 | | simpll2 1213 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑎 +no 𝑏) ∈ 𝑥) ∧ 𝑑 ∈ 𝑏) → 𝑏 ∈ On) |
55 | | onelon 6389 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑏 ∈ On ∧ 𝑑 ∈ 𝑏) → 𝑑 ∈ On) |
56 | 54, 53, 55 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑎 +no 𝑏) ∈ 𝑥) ∧ 𝑑 ∈ 𝑏) → 𝑑 ∈ On) |
57 | | simpll1 1212 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑎 +no 𝑏) ∈ 𝑥) ∧ 𝑑 ∈ 𝑏) → 𝑎 ∈ On) |
58 | | naddel2 8686 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑑 ∈ On ∧ 𝑏 ∈ On ∧ 𝑎 ∈ On) → (𝑑 ∈ 𝑏 ↔ (𝑎 +no 𝑑) ∈ (𝑎 +no 𝑏))) |
59 | 56, 54, 57, 58 | syl3anc 1371 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑎 +no 𝑏) ∈ 𝑥) ∧ 𝑑 ∈ 𝑏) → (𝑑 ∈ 𝑏 ↔ (𝑎 +no 𝑑) ∈ (𝑎 +no 𝑏))) |
60 | 53, 59 | mpbid 231 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑎 +no 𝑏) ∈ 𝑥) ∧ 𝑑 ∈ 𝑏) → (𝑎 +no 𝑑) ∈ (𝑎 +no 𝑏)) |
61 | | simplr 767 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑎 +no 𝑏) ∈ 𝑥) ∧ 𝑑 ∈ 𝑏) → (𝑎 +no 𝑏) ∈ 𝑥) |
62 | 60, 61 | jca 512 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑎 +no 𝑏) ∈ 𝑥) ∧ 𝑑 ∈ 𝑏) → ((𝑎 +no 𝑑) ∈ (𝑎 +no 𝑏) ∧ (𝑎 +no 𝑏) ∈ 𝑥)) |
63 | | ontr1 6410 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ On → (((𝑎 +no 𝑑) ∈ (𝑎 +no 𝑏) ∧ (𝑎 +no 𝑏) ∈ 𝑥) → (𝑎 +no 𝑑) ∈ 𝑥)) |
64 | 52, 62, 63 | sylc 65 |
. . . . . . . . . . . . . 14
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑎 +no 𝑏) ∈ 𝑥) ∧ 𝑑 ∈ 𝑏) → (𝑎 +no 𝑑) ∈ 𝑥) |
65 | 64 | ralrimiva 3146 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑎 +no 𝑏) ∈ 𝑥) → ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ 𝑥) |
66 | | simpll1 1212 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑎 +no 𝑏) ∈ 𝑥) ∧ 𝑐 ∈ 𝑎) → 𝑎 ∈ On) |
67 | | simpr 485 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑎 +no 𝑏) ∈ 𝑥) ∧ 𝑐 ∈ 𝑎) → 𝑐 ∈ 𝑎) |
68 | | onelon 6389 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 ∈ On ∧ 𝑐 ∈ 𝑎) → 𝑐 ∈ On) |
69 | 66, 67, 68 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑎 +no 𝑏) ∈ 𝑥) ∧ 𝑐 ∈ 𝑎) → 𝑐 ∈ On) |
70 | | simpll2 1213 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑎 +no 𝑏) ∈ 𝑥) ∧ 𝑐 ∈ 𝑎) → 𝑏 ∈ On) |
71 | 69, 66, 70 | 3jca 1128 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑎 +no 𝑏) ∈ 𝑥) ∧ 𝑐 ∈ 𝑎) → (𝑐 ∈ On ∧ 𝑎 ∈ On ∧ 𝑏 ∈ On)) |
72 | | naddelim 8684 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑐 ∈ On ∧ 𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑐 ∈ 𝑎 → (𝑐 +no 𝑏) ∈ (𝑎 +no 𝑏))) |
73 | 71, 67, 72 | sylc 65 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑎 +no 𝑏) ∈ 𝑥) ∧ 𝑐 ∈ 𝑎) → (𝑐 +no 𝑏) ∈ (𝑎 +no 𝑏)) |
74 | | simplr 767 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑎 +no 𝑏) ∈ 𝑥) ∧ 𝑐 ∈ 𝑎) → (𝑎 +no 𝑏) ∈ 𝑥) |
75 | | elunii 4913 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑐 +no 𝑏) ∈ (𝑎 +no 𝑏) ∧ (𝑎 +no 𝑏) ∈ 𝑥) → (𝑐 +no 𝑏) ∈ ∪ 𝑥) |
76 | 73, 74, 75 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑎 +no 𝑏) ∈ 𝑥) ∧ 𝑐 ∈ 𝑎) → (𝑐 +no 𝑏) ∈ ∪ 𝑥) |
77 | | simpll3 1214 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑎 +no 𝑏) ∈ 𝑥) ∧ 𝑐 ∈ 𝑎) → 𝑥 ∈ On) |
78 | | eloni 6374 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ On → Ord 𝑥) |
79 | 77, 78 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑎 +no 𝑏) ∈ 𝑥) ∧ 𝑐 ∈ 𝑎) → Ord 𝑥) |
80 | | ordsucuniel 7811 |
. . . . . . . . . . . . . . . 16
⊢ (Ord
𝑥 → ((𝑐 +no 𝑏) ∈ ∪ 𝑥 ↔ suc (𝑐 +no 𝑏) ∈ 𝑥)) |
81 | 79, 80 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑎 +no 𝑏) ∈ 𝑥) ∧ 𝑐 ∈ 𝑎) → ((𝑐 +no 𝑏) ∈ ∪ 𝑥 ↔ suc (𝑐 +no 𝑏) ∈ 𝑥)) |
82 | 76, 81 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑎 +no 𝑏) ∈ 𝑥) ∧ 𝑐 ∈ 𝑎) → suc (𝑐 +no 𝑏) ∈ 𝑥) |
83 | 82 | ralrimiva 3146 |
. . . . . . . . . . . . 13
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑎 +no 𝑏) ∈ 𝑥) → ∀𝑐 ∈ 𝑎 suc (𝑐 +no 𝑏) ∈ 𝑥) |
84 | 65, 83 | jca 512 |
. . . . . . . . . . . 12
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑎 +no 𝑏) ∈ 𝑥) → (∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ∧ ∀𝑐 ∈ 𝑎 suc (𝑐 +no 𝑏) ∈ 𝑥)) |
85 | 84 | ex 413 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On ∧ 𝑥 ∈ On) → ((𝑎 +no 𝑏) ∈ 𝑥 → (∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ∧ ∀𝑐 ∈ 𝑎 suc (𝑐 +no 𝑏) ∈ 𝑥))) |
86 | 85 | ad4ant124 1173 |
. . . . . . . . . 10
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏)) ∧ 𝑥 ∈ On) → ((𝑎 +no 𝑏) ∈ 𝑥 → (∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ∧ ∀𝑐 ∈ 𝑎 suc (𝑐 +no 𝑏) ∈ 𝑥))) |
87 | 86 | pm4.71d 562 |
. . . . . . . . 9
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏)) ∧ 𝑥 ∈ On) → ((𝑎 +no 𝑏) ∈ 𝑥 ↔ ((𝑎 +no 𝑏) ∈ 𝑥 ∧ (∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ 𝑥 ∧ ∀𝑐 ∈ 𝑎 suc (𝑐 +no 𝑏) ∈ 𝑥)))) |
88 | 51, 87 | bitr4id 289 |
. . . . . . . 8
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏)) ∧ 𝑥 ∈ On) → ((((𝑎 +no 𝑏) ∈ 𝑥 ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no 𝑑) ∈ 𝑥) ∧ ∀𝑐 ∈ 𝑎 suc (𝑐 +no 𝑏) ∈ 𝑥) ↔ (𝑎 +no 𝑏) ∈ 𝑥)) |
89 | 50, 88 | bitrd 278 |
. . . . . . 7
⊢ ((((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏)) ∧ 𝑥 ∈ On) → ((∀𝑑 ∈ suc 𝑏(𝑎 +no 𝑑) ∈ 𝑥 ∧ ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) ∈ 𝑥) ↔ (𝑎 +no 𝑏) ∈ 𝑥)) |
90 | 89 | rabbidva 3439 |
. . . . . 6
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏)) → {𝑥 ∈ On ∣ (∀𝑑 ∈ suc 𝑏(𝑎 +no 𝑑) ∈ 𝑥 ∧ ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) ∈ 𝑥)} = {𝑥 ∈ On ∣ (𝑎 +no 𝑏) ∈ 𝑥}) |
91 | 90 | inteqd 4955 |
. . . . 5
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏)) → ∩ {𝑥 ∈ On ∣
(∀𝑑 ∈ suc 𝑏(𝑎 +no 𝑑) ∈ 𝑥 ∧ ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) ∈ 𝑥)} = ∩ {𝑥 ∈ On ∣ (𝑎 +no 𝑏) ∈ 𝑥}) |
92 | | onsuc 7798 |
. . . . . . 7
⊢ (𝑏 ∈ On → suc 𝑏 ∈ On) |
93 | | naddov2 8677 |
. . . . . . 7
⊢ ((𝑎 ∈ On ∧ suc 𝑏 ∈ On) → (𝑎 +no suc 𝑏) = ∩ {𝑥 ∈ On ∣
(∀𝑑 ∈ suc 𝑏(𝑎 +no 𝑑) ∈ 𝑥 ∧ ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) ∈ 𝑥)}) |
94 | 92, 93 | sylan2 593 |
. . . . . 6
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 +no suc 𝑏) = ∩ {𝑥 ∈ On ∣
(∀𝑑 ∈ suc 𝑏(𝑎 +no 𝑑) ∈ 𝑥 ∧ ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) ∈ 𝑥)}) |
95 | 94 | adantr 481 |
. . . . 5
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏)) → (𝑎 +no suc 𝑏) = ∩ {𝑥 ∈ On ∣
(∀𝑑 ∈ suc 𝑏(𝑎 +no 𝑑) ∈ 𝑥 ∧ ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) ∈ 𝑥)}) |
96 | | naddcl 8675 |
. . . . . . 7
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → (𝑎 +no 𝑏) ∈ On) |
97 | | onsucmin 7808 |
. . . . . . 7
⊢ ((𝑎 +no 𝑏) ∈ On → suc (𝑎 +no 𝑏) = ∩ {𝑥 ∈ On ∣ (𝑎 +no 𝑏) ∈ 𝑥}) |
98 | 96, 97 | syl 17 |
. . . . . 6
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) → suc (𝑎 +no 𝑏) = ∩ {𝑥 ∈ On ∣ (𝑎 +no 𝑏) ∈ 𝑥}) |
99 | 98 | adantr 481 |
. . . . 5
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏)) → suc (𝑎 +no 𝑏) = ∩ {𝑥 ∈ On ∣ (𝑎 +no 𝑏) ∈ 𝑥}) |
100 | 91, 95, 99 | 3eqtr4d 2782 |
. . . 4
⊢ (((𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏)) → (𝑎 +no suc 𝑏) = suc (𝑎 +no 𝑏)) |
101 | 100 | ex 413 |
. . 3
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) →
(∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏) → (𝑎 +no suc 𝑏) = suc (𝑎 +no 𝑏))) |
102 | 29, 101 | syld 47 |
. 2
⊢ ((𝑎 ∈ On ∧ 𝑏 ∈ On) →
((∀𝑐 ∈ 𝑎 ∀𝑑 ∈ 𝑏 (𝑐 +no suc 𝑑) = suc (𝑐 +no 𝑑) ∧ ∀𝑐 ∈ 𝑎 (𝑐 +no suc 𝑏) = suc (𝑐 +no 𝑏) ∧ ∀𝑑 ∈ 𝑏 (𝑎 +no suc 𝑑) = suc (𝑎 +no 𝑑)) → (𝑎 +no suc 𝑏) = suc (𝑎 +no 𝑏))) |
103 | 5, 11, 16, 21, 27, 102 | on2ind 8667 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no suc 𝐵) = suc (𝐴 +no 𝐵)) |