Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindsadd Structured version   Visualization version   GIF version

Theorem lindsadd 34752
Description: In a vector space, the union of an independent set and a vector not in its span is an independent set. (Contributed by Brendan Leahy, 4-Mar-2023.)
Assertion
Ref Expression
lindsadd ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝐹 ∪ {𝑋}) ∈ (LIndS‘𝑊))

Proof of Theorem lindsadd
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2826 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
21linds1 20870 . . . 4 (𝐹 ∈ (LIndS‘𝑊) → 𝐹 ⊆ (Base‘𝑊))
3 eldifi 4107 . . . . 5 (𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹)) → 𝑋 ∈ (Base‘𝑊))
43snssd 4741 . . . 4 (𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹)) → {𝑋} ⊆ (Base‘𝑊))
5 unss 4164 . . . . 5 ((𝐹 ⊆ (Base‘𝑊) ∧ {𝑋} ⊆ (Base‘𝑊)) ↔ (𝐹 ∪ {𝑋}) ⊆ (Base‘𝑊))
65biimpi 217 . . . 4 ((𝐹 ⊆ (Base‘𝑊) ∧ {𝑋} ⊆ (Base‘𝑊)) → (𝐹 ∪ {𝑋}) ⊆ (Base‘𝑊))
72, 4, 6syl2an 595 . . 3 ((𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝐹 ∪ {𝑋}) ⊆ (Base‘𝑊))
873adant1 1124 . 2 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝐹 ∪ {𝑋}) ⊆ (Base‘𝑊))
9 eldifn 4108 . . . . . . 7 (𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹)) → ¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹))
1093ad2ant3 1129 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹))
1110adantr 481 . . . . 5 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹))
12 simpll1 1206 . . . . . . . 8 ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) ∧ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋}))) → 𝑊 ∈ LVec)
132ssdifssd 4123 . . . . . . . . . 10 (𝐹 ∈ (LIndS‘𝑊) → (𝐹 ∖ {𝑥}) ⊆ (Base‘𝑊))
14133ad2ant2 1128 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝐹 ∖ {𝑥}) ⊆ (Base‘𝑊))
1514ad2antrr 722 . . . . . . . 8 ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) ∧ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋}))) → (𝐹 ∖ {𝑥}) ⊆ (Base‘𝑊))
1633ad2ant3 1129 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → 𝑋 ∈ (Base‘𝑊))
1716ad2antrr 722 . . . . . . . 8 ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) ∧ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋}))) → 𝑋 ∈ (Base‘𝑊))
18 simpr 485 . . . . . . . . 9 ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) ∧ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋}))) → 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋})))
19 lveclmod 19798 . . . . . . . . . . . . 13 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
2019ad2antrr 722 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑊 ∈ LMod)
21 eqid 2826 . . . . . . . . . . . . . . . 16 (Scalar‘𝑊) = (Scalar‘𝑊)
2221lmodring 19562 . . . . . . . . . . . . . . 15 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
2319, 22syl 17 . . . . . . . . . . . . . 14 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ Ring)
24 eqid 2826 . . . . . . . . . . . . . . 15 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
25 eqid 2826 . . . . . . . . . . . . . . 15 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2624, 25ringelnzr 19958 . . . . . . . . . . . . . 14 (((Scalar‘𝑊) ∈ Ring ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → (Scalar‘𝑊) ∈ NzRing)
2723, 26sylan 580 . . . . . . . . . . . . 13 ((𝑊 ∈ LVec ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → (Scalar‘𝑊) ∈ NzRing)
2827ad2ant2rl 745 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (Scalar‘𝑊) ∈ NzRing)
29 simplr 765 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝐹 ∈ (LIndS‘𝑊))
30 simprl 767 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑥𝐹)
31 eqid 2826 . . . . . . . . . . . . 13 (LSpan‘𝑊) = (LSpan‘𝑊)
3231, 21lindsind2 20879 . . . . . . . . . . . 12 (((𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑥𝐹) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥})))
3320, 28, 29, 30, 32syl211anc 1370 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥})))
34333adantl3 1162 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥})))
3534adantr 481 . . . . . . . . 9 ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) ∧ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋}))) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥})))
3618, 35eldifd 3951 . . . . . . . 8 ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) ∧ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋}))) → 𝑥 ∈ (((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋})) ∖ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥}))))
37 eqid 2826 . . . . . . . . 9 (LSubSp‘𝑊) = (LSubSp‘𝑊)
381, 37, 31lspsolv 19835 . . . . . . . 8 ((𝑊 ∈ LVec ∧ ((𝐹 ∖ {𝑥}) ⊆ (Base‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊) ∧ 𝑥 ∈ (((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋})) ∖ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥}))))) → 𝑋 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑥})))
3912, 15, 17, 36, 38syl13anc 1366 . . . . . . 7 ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) ∧ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋}))) → 𝑋 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑥})))
4039ex 413 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋})) → 𝑋 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑥}))))
41 eldif 3950 . . . . . . . . . . . . . . . . . 18 (𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹)) ↔ (𝑋 ∈ (Base‘𝑊) ∧ ¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹)))
42 snssi 4740 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑋𝐹 → {𝑋} ⊆ 𝐹)
431, 31lspss 19676 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑊 ∈ LMod ∧ 𝐹 ⊆ (Base‘𝑊) ∧ {𝑋} ⊆ 𝐹) → ((LSpan‘𝑊)‘{𝑋}) ⊆ ((LSpan‘𝑊)‘𝐹))
4419, 2, 42, 43syl3an 1154 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋𝐹) → ((LSpan‘𝑊)‘{𝑋}) ⊆ ((LSpan‘𝑊)‘𝐹))
4544ad4ant124 1167 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑋𝐹) → ((LSpan‘𝑊)‘{𝑋}) ⊆ ((LSpan‘𝑊)‘𝐹))
461, 31lspsnid 19685 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑊 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑋 ∈ ((LSpan‘𝑊)‘{𝑋}))
4719, 46sylan 580 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑊 ∈ LVec ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑋 ∈ ((LSpan‘𝑊)‘{𝑋}))
4847ad4ant13 747 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑋𝐹) → 𝑋 ∈ ((LSpan‘𝑊)‘{𝑋}))
4945, 48sseldd 3972 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑋𝐹) → 𝑋 ∈ ((LSpan‘𝑊)‘𝐹))
5049ex 413 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 𝑋 ∈ (Base‘𝑊)) → (𝑋𝐹𝑋 ∈ ((LSpan‘𝑊)‘𝐹)))
5150con3d 155 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 𝑋 ∈ (Base‘𝑊)) → (¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹) → ¬ 𝑋𝐹))
5251expimpd 454 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) → ((𝑋 ∈ (Base‘𝑊) ∧ ¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹)) → ¬ 𝑋𝐹))
53523impia 1111 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ (𝑋 ∈ (Base‘𝑊) ∧ ¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹))) → ¬ 𝑋𝐹)
5441, 53syl3an3b 1399 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ¬ 𝑋𝐹)
55 eleq1 2905 . . . . . . . . . . . . . . . . . 18 (𝑋 = 𝑥 → (𝑋𝐹𝑥𝐹))
5655notbid 319 . . . . . . . . . . . . . . . . 17 (𝑋 = 𝑥 → (¬ 𝑋𝐹 ↔ ¬ 𝑥𝐹))
5754, 56syl5ibcom 246 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝑋 = 𝑥 → ¬ 𝑥𝐹))
5857necon2ad 3036 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝑥𝐹𝑋𝑥))
5958imp 407 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑥𝐹) → 𝑋𝑥)
60 disjsn2 4647 . . . . . . . . . . . . . 14 (𝑋𝑥 → ({𝑋} ∩ {𝑥}) = ∅)
6159, 60syl 17 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑥𝐹) → ({𝑋} ∩ {𝑥}) = ∅)
62 disj3 4406 . . . . . . . . . . . . 13 (({𝑋} ∩ {𝑥}) = ∅ ↔ {𝑋} = ({𝑋} ∖ {𝑥}))
6361, 62sylib 219 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑥𝐹) → {𝑋} = ({𝑋} ∖ {𝑥}))
6463uneq2d 4143 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑥𝐹) → ((𝐹 ∖ {𝑥}) ∪ {𝑋}) = ((𝐹 ∖ {𝑥}) ∪ ({𝑋} ∖ {𝑥})))
65 difundir 4261 . . . . . . . . . . 11 ((𝐹 ∪ {𝑋}) ∖ {𝑥}) = ((𝐹 ∖ {𝑥}) ∪ ({𝑋} ∖ {𝑥}))
6664, 65syl6eqr 2879 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑥𝐹) → ((𝐹 ∖ {𝑥}) ∪ {𝑋}) = ((𝐹 ∪ {𝑋}) ∖ {𝑥}))
6766fveq2d 6671 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑥𝐹) → ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋})) = ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))
6867eleq2d 2903 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑥𝐹) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋})) ↔ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
6968adantrr 713 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋})) ↔ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
70 simpl 483 . . . . . . . . . . . . 13 ((𝑊 ∈ LVec ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → 𝑊 ∈ LVec)
71 eldifsn 4718 . . . . . . . . . . . . . . 15 (𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))))
7271biimpi 217 . . . . . . . . . . . . . 14 (𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) → (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))))
7372adantl 482 . . . . . . . . . . . . 13 ((𝑊 ∈ LVec ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))))
742sselda 3971 . . . . . . . . . . . . 13 ((𝐹 ∈ (LIndS‘𝑊) ∧ 𝑥𝐹) → 𝑥 ∈ (Base‘𝑊))
75 eqid 2826 . . . . . . . . . . . . . 14 ( ·𝑠𝑊) = ( ·𝑠𝑊)
761, 21, 75, 25, 24, 31lspsnvs 19806 . . . . . . . . . . . . 13 ((𝑊 ∈ LVec ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑥)}) = ((LSpan‘𝑊)‘{𝑥}))
7770, 73, 74, 76syl2an3an 1416 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) ∧ (𝐹 ∈ (LIndS‘𝑊) ∧ 𝑥𝐹)) → ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑥)}) = ((LSpan‘𝑊)‘{𝑥}))
7877an42s 657 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑥)}) = ((LSpan‘𝑊)‘{𝑥}))
7978sseq1d 4002 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑥)}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
80793adantl3 1162 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑥)}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
81 eldifi 4107 . . . . . . . . . 10 (𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
82193ad2ant1 1127 . . . . . . . . . . . 12 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑊 ∈ LMod)
8382adantr 481 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ (Base‘(Scalar‘𝑊)))) → 𝑊 ∈ LMod)
84 snssi 4740 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (Base‘𝑊) → {𝑋} ⊆ (Base‘𝑊))
852, 84, 6syl2an 595 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) → (𝐹 ∪ {𝑋}) ⊆ (Base‘𝑊))
8685ssdifssd 4123 . . . . . . . . . . . . . 14 ((𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) → ((𝐹 ∪ {𝑋}) ∖ {𝑥}) ⊆ (Base‘𝑊))
871, 37, 31lspcl 19668 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ ((𝐹 ∪ {𝑋}) ∖ {𝑥}) ⊆ (Base‘𝑊)) → ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ∈ (LSubSp‘𝑊))
8819, 86, 87syl2an 595 . . . . . . . . . . . . 13 ((𝑊 ∈ LVec ∧ (𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊))) → ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ∈ (LSubSp‘𝑊))
89883impb 1109 . . . . . . . . . . . 12 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ∈ (LSubSp‘𝑊))
9089adantr 481 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ (Base‘(Scalar‘𝑊)))) → ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ∈ (LSubSp‘𝑊))
9119anim1i 614 . . . . . . . . . . . . . 14 ((𝑊 ∈ LVec ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑊 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))))
921, 21, 75, 25lmodvscl 19571 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑘( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
93923expa 1112 . . . . . . . . . . . . . 14 (((𝑊 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑘( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
9491, 74, 93syl2an 595 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝐹 ∈ (LIndS‘𝑊) ∧ 𝑥𝐹)) → (𝑘( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
9594an42s 657 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ (Base‘(Scalar‘𝑊)))) → (𝑘( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
96953adantl3 1162 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ (Base‘(Scalar‘𝑊)))) → (𝑘( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
971, 37, 31, 83, 90, 96lspsnel5 19687 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ (Base‘(Scalar‘𝑊)))) → ((𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑥)}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
9881, 97sylanr2 679 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ((𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑥)}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
9982adantr 481 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑥𝐹) → 𝑊 ∈ LMod)
10089adantr 481 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑥𝐹) → ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ∈ (LSubSp‘𝑊))
101743ad2antl2 1180 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑥𝐹) → 𝑥 ∈ (Base‘𝑊))
1021, 37, 31, 99, 100, 101lspsnel5 19687 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑥𝐹) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
103102adantrr 713 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
10480, 98, 1033bitr4rd 313 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
1053, 104syl3anl3 1408 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
10669, 105bitrd 280 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋})) ↔ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
107 difsnid 4742 . . . . . . . . 9 (𝑥𝐹 → ((𝐹 ∖ {𝑥}) ∪ {𝑥}) = 𝐹)
108107fveq2d 6671 . . . . . . . 8 (𝑥𝐹 → ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑥})) = ((LSpan‘𝑊)‘𝐹))
109108eleq2d 2903 . . . . . . 7 (𝑥𝐹 → (𝑋 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑥})) ↔ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹)))
110109ad2antrl 724 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑋 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑥})) ↔ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹)))
11140, 106, 1103imtr3d 294 . . . . 5 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ((𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) → 𝑋 ∈ ((LSpan‘𝑊)‘𝐹)))
11211, 111mtod 199 . . . 4 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))
113112ralrimivva 3196 . . 3 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ∀𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))
11410adantr 481 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹))
115 difsn 4730 . . . . . . . . . . 11 𝑋𝐹 → (𝐹 ∖ {𝑋}) = 𝐹)
11654, 115syl 17 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝐹 ∖ {𝑋}) = 𝐹)
117116fveq2d 6671 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋})) = ((LSpan‘𝑊)‘𝐹))
118117eleq2d 2903 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ((𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋})) ↔ (𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘𝐹)))
119118adantr 481 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ((𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋})) ↔ (𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘𝐹)))
1201, 21, 75, 25, 24, 31lspsnvs 19806 . . . . . . . . . . . . . 14 ((𝑊 ∈ LVec ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))) ∧ 𝑋 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑋)}) = ((LSpan‘𝑊)‘{𝑋}))
1211203expa 1112 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊)))) ∧ 𝑋 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑋)}) = ((LSpan‘𝑊)‘{𝑋}))
122121an32s 648 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊)))) → ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑋)}) = ((LSpan‘𝑊)‘{𝑋}))
12371, 122sylan2b 593 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑋)}) = ((LSpan‘𝑊)‘{𝑋}))
124123sseq1d 4002 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → (((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑋)}) ⊆ ((LSpan‘𝑊)‘𝐹) ↔ ((LSpan‘𝑊)‘{𝑋}) ⊆ ((LSpan‘𝑊)‘𝐹)))
1251243adantl2 1161 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → (((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑋)}) ⊆ ((LSpan‘𝑊)‘𝐹) ↔ ((LSpan‘𝑊)‘{𝑋}) ⊆ ((LSpan‘𝑊)‘𝐹)))
12682adantr 481 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑊 ∈ LMod)
1271, 37, 31lspcl 19668 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ 𝐹 ⊆ (Base‘𝑊)) → ((LSpan‘𝑊)‘𝐹) ∈ (LSubSp‘𝑊))
12819, 2, 127syl2an 595 . . . . . . . . . . . . 13 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) → ((LSpan‘𝑊)‘𝐹) ∈ (LSubSp‘𝑊))
1291283adant3 1126 . . . . . . . . . . . 12 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘𝐹) ∈ (LSubSp‘𝑊))
130129adantr 481 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → ((LSpan‘𝑊)‘𝐹) ∈ (LSubSp‘𝑊))
1311, 21, 75, 25lmodvscl 19571 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑋 ∈ (Base‘𝑊)) → (𝑘( ·𝑠𝑊)𝑋) ∈ (Base‘𝑊))
1321313expa 1112 . . . . . . . . . . . . . 14 (((𝑊 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 ∈ (Base‘𝑊)) → (𝑘( ·𝑠𝑊)𝑋) ∈ (Base‘𝑊))
133132an32s 648 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑋) ∈ (Base‘𝑊))
13419, 133sylanl1 676 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑋) ∈ (Base‘𝑊))
1351343adantl2 1161 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑋) ∈ (Base‘𝑊))
1361, 37, 31, 126, 130, 135lspsnel5 19687 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → ((𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘𝐹) ↔ ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑋)}) ⊆ ((LSpan‘𝑊)‘𝐹)))
13781, 136sylan2 592 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ((𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘𝐹) ↔ ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑋)}) ⊆ ((LSpan‘𝑊)‘𝐹)))
138 simp3 1132 . . . . . . . . . . 11 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑋 ∈ (Base‘𝑊))
1391, 37, 31, 82, 129, 138lspsnel5 19687 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) → (𝑋 ∈ ((LSpan‘𝑊)‘𝐹) ↔ ((LSpan‘𝑊)‘{𝑋}) ⊆ ((LSpan‘𝑊)‘𝐹)))
140139adantr 481 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → (𝑋 ∈ ((LSpan‘𝑊)‘𝐹) ↔ ((LSpan‘𝑊)‘{𝑋}) ⊆ ((LSpan‘𝑊)‘𝐹)))
141125, 137, 1403bitr4d 312 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ((𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘𝐹) ↔ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹)))
1423, 141syl3anl3 1408 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ((𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘𝐹) ↔ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹)))
143119, 142bitrd 280 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ((𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋})) ↔ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹)))
144114, 143mtbird 326 . . . . 5 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ¬ (𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋})))
145144ralrimiva 3187 . . . 4 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋})))
146 oveq2 7156 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑘( ·𝑠𝑊)𝑥) = (𝑘( ·𝑠𝑊)𝑋))
147 sneq 4574 . . . . . . . . . . . 12 (𝑥 = 𝑋 → {𝑥} = {𝑋})
148147difeq2d 4103 . . . . . . . . . . 11 (𝑥 = 𝑋 → ((𝐹 ∪ {𝑋}) ∖ {𝑥}) = ((𝐹 ∪ {𝑋}) ∖ {𝑋}))
149 difun2 4432 . . . . . . . . . . 11 ((𝐹 ∪ {𝑋}) ∖ {𝑋}) = (𝐹 ∖ {𝑋})
150148, 149syl6eq 2877 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝐹 ∪ {𝑋}) ∖ {𝑥}) = (𝐹 ∖ {𝑋}))
151150fveq2d 6671 . . . . . . . . 9 (𝑥 = 𝑋 → ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) = ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋})))
152146, 151eleq12d 2912 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ (𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋}))))
153152notbid 319 . . . . . . 7 (𝑥 = 𝑋 → (¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ¬ (𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋}))))
154153ralbidv 3202 . . . . . 6 (𝑥 = 𝑋 → (∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋}))))
155154ralsng 4612 . . . . 5 (𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹)) → (∀𝑥 ∈ {𝑋}∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋}))))
1561553ad2ant3 1129 . . . 4 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (∀𝑥 ∈ {𝑋}∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋}))))
157145, 156mpbird 258 . . 3 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ∀𝑥 ∈ {𝑋}∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))
158 ralunb 4171 . . 3 (∀𝑥 ∈ (𝐹 ∪ {𝑋})∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ (∀𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ∧ ∀𝑥 ∈ {𝑋}∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
159113, 157, 158sylanbrc 583 . 2 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ∀𝑥 ∈ (𝐹 ∪ {𝑋})∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))
1601, 75, 31, 21, 25, 24islinds2 20873 . . 3 (𝑊 ∈ LVec → ((𝐹 ∪ {𝑋}) ∈ (LIndS‘𝑊) ↔ ((𝐹 ∪ {𝑋}) ⊆ (Base‘𝑊) ∧ ∀𝑥 ∈ (𝐹 ∪ {𝑋})∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))))
1611603ad2ant1 1127 . 2 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ((𝐹 ∪ {𝑋}) ∈ (LIndS‘𝑊) ↔ ((𝐹 ∪ {𝑋}) ⊆ (Base‘𝑊) ∧ ∀𝑥 ∈ (𝐹 ∪ {𝑋})∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))))
1628, 159, 161mpbir2and 709 1 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝐹 ∪ {𝑋}) ∈ (LIndS‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3021  wral 3143  cdif 3937  cun 3938  cin 3939  wss 3940  c0 4295  {csn 4564  cfv 6352  (class class class)co 7148  Basecbs 16473  Scalarcsca 16558   ·𝑠 cvsca 16559  0gc0g 16703  Ringcrg 19217  LModclmod 19554  LSubSpclss 19623  LSpanclspn 19663  LVecclvec 19794  NzRingcnzr 19949  LIndSclinds 20865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-tpos 7883  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-3 11690  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-mulr 16569  df-0g 16705  df-mgm 17842  df-sgrp 17890  df-mnd 17901  df-grp 18036  df-minusg 18037  df-sbg 18038  df-cmn 18828  df-abl 18829  df-mgp 19160  df-ur 19172  df-ring 19219  df-oppr 19293  df-dvdsr 19311  df-unit 19312  df-invr 19342  df-drng 19424  df-lmod 19556  df-lss 19624  df-lsp 19664  df-lvec 19795  df-nzr 19950  df-lindf 20866  df-linds 20867
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator