Step | Hyp | Ref
| Expression |
1 | | eqid 2758 |
. . . . 5
⊢
(Base‘𝑊) =
(Base‘𝑊) |
2 | 1 | linds1 20575 |
. . . 4
⊢ (𝐹 ∈ (LIndS‘𝑊) → 𝐹 ⊆ (Base‘𝑊)) |
3 | | eldifi 4032 |
. . . . 5
⊢ (𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹)) → 𝑋 ∈ (Base‘𝑊)) |
4 | 3 | snssd 4699 |
. . . 4
⊢ (𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹)) → {𝑋} ⊆ (Base‘𝑊)) |
5 | | unss 4089 |
. . . . 5
⊢ ((𝐹 ⊆ (Base‘𝑊) ∧ {𝑋} ⊆ (Base‘𝑊)) ↔ (𝐹 ∪ {𝑋}) ⊆ (Base‘𝑊)) |
6 | 5 | biimpi 219 |
. . . 4
⊢ ((𝐹 ⊆ (Base‘𝑊) ∧ {𝑋} ⊆ (Base‘𝑊)) → (𝐹 ∪ {𝑋}) ⊆ (Base‘𝑊)) |
7 | 2, 4, 6 | syl2an 598 |
. . 3
⊢ ((𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝐹 ∪ {𝑋}) ⊆ (Base‘𝑊)) |
8 | 7 | 3adant1 1127 |
. 2
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝐹 ∪ {𝑋}) ⊆ (Base‘𝑊)) |
9 | | eldifn 4033 |
. . . . . . 7
⊢ (𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹)) → ¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹)) |
10 | 9 | 3ad2ant3 1132 |
. . . . . 6
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹)) |
11 | 10 | adantr 484 |
. . . . 5
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → ¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹)) |
12 | | simpll1 1209 |
. . . . . . . 8
⊢ ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) ∧ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋}))) → 𝑊 ∈ LVec) |
13 | 2 | ssdifssd 4048 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (LIndS‘𝑊) → (𝐹 ∖ {𝑥}) ⊆ (Base‘𝑊)) |
14 | 13 | 3ad2ant2 1131 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝐹 ∖ {𝑥}) ⊆ (Base‘𝑊)) |
15 | 14 | ad2antrr 725 |
. . . . . . . 8
⊢ ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) ∧ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋}))) → (𝐹 ∖ {𝑥}) ⊆ (Base‘𝑊)) |
16 | 3 | 3ad2ant3 1132 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → 𝑋 ∈ (Base‘𝑊)) |
17 | 16 | ad2antrr 725 |
. . . . . . . 8
⊢ ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) ∧ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋}))) → 𝑋 ∈ (Base‘𝑊)) |
18 | | simpr 488 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) ∧ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋}))) → 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋}))) |
19 | | lveclmod 19946 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
20 | 19 | ad2antrr 725 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → 𝑊 ∈ LMod) |
21 | | eqid 2758 |
. . . . . . . . . . . . . . . 16
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
22 | 21 | lmodring 19710 |
. . . . . . . . . . . . . . 15
⊢ (𝑊 ∈ LMod →
(Scalar‘𝑊) ∈
Ring) |
23 | 19, 22 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑊 ∈ LVec →
(Scalar‘𝑊) ∈
Ring) |
24 | | eqid 2758 |
. . . . . . . . . . . . . . 15
⊢
(0g‘(Scalar‘𝑊)) =
(0g‘(Scalar‘𝑊)) |
25 | | eqid 2758 |
. . . . . . . . . . . . . . 15
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
26 | 24, 25 | ringelnzr 20107 |
. . . . . . . . . . . . . 14
⊢
(((Scalar‘𝑊)
∈ Ring ∧ 𝑘 ∈
((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) → (Scalar‘𝑊) ∈ NzRing) |
27 | 23, 26 | sylan 583 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ LVec ∧ 𝑘 ∈
((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) → (Scalar‘𝑊) ∈ NzRing) |
28 | 27 | ad2ant2rl 748 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → (Scalar‘𝑊) ∈
NzRing) |
29 | | simplr 768 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → 𝐹 ∈ (LIndS‘𝑊)) |
30 | | simprl 770 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → 𝑥 ∈ 𝐹) |
31 | | eqid 2758 |
. . . . . . . . . . . . 13
⊢
(LSpan‘𝑊) =
(LSpan‘𝑊) |
32 | 31, 21 | lindsind2 20584 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ LMod ∧
(Scalar‘𝑊) ∈
NzRing) ∧ 𝐹 ∈
(LIndS‘𝑊) ∧ 𝑥 ∈ 𝐹) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥}))) |
33 | 20, 28, 29, 30, 32 | syl211anc 1373 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥}))) |
34 | 33 | 3adantl3 1165 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥}))) |
35 | 34 | adantr 484 |
. . . . . . . . 9
⊢ ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) ∧ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋}))) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥}))) |
36 | 18, 35 | eldifd 3869 |
. . . . . . . 8
⊢ ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) ∧ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋}))) → 𝑥 ∈ (((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋})) ∖ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥})))) |
37 | | eqid 2758 |
. . . . . . . . 9
⊢
(LSubSp‘𝑊) =
(LSubSp‘𝑊) |
38 | 1, 37, 31 | lspsolv 19983 |
. . . . . . . 8
⊢ ((𝑊 ∈ LVec ∧ ((𝐹 ∖ {𝑥}) ⊆ (Base‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊) ∧ 𝑥 ∈ (((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋})) ∖ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥}))))) → 𝑋 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑥}))) |
39 | 12, 15, 17, 36, 38 | syl13anc 1369 |
. . . . . . 7
⊢ ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) ∧ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋}))) → 𝑋 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑥}))) |
40 | 39 | ex 416 |
. . . . . 6
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋})) → 𝑋 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑥})))) |
41 | | eldif 3868 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹)) ↔ (𝑋 ∈ (Base‘𝑊) ∧ ¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹))) |
42 | | snssi 4698 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑋 ∈ 𝐹 → {𝑋} ⊆ 𝐹) |
43 | 1, 31 | lspss 19824 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑊 ∈ LMod ∧ 𝐹 ⊆ (Base‘𝑊) ∧ {𝑋} ⊆ 𝐹) → ((LSpan‘𝑊)‘{𝑋}) ⊆ ((LSpan‘𝑊)‘𝐹)) |
44 | 19, 2, 42, 43 | syl3an 1157 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ 𝐹) → ((LSpan‘𝑊)‘{𝑋}) ⊆ ((LSpan‘𝑊)‘𝐹)) |
45 | 44 | ad4ant124 1170 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑋 ∈ 𝐹) → ((LSpan‘𝑊)‘{𝑋}) ⊆ ((LSpan‘𝑊)‘𝐹)) |
46 | 1, 31 | lspsnid 19833 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑋 ∈ ((LSpan‘𝑊)‘{𝑋})) |
47 | 19, 46 | sylan 583 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑋 ∈ ((LSpan‘𝑊)‘{𝑋})) |
48 | 47 | ad4ant13 750 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑋 ∈ 𝐹) → 𝑋 ∈ ((LSpan‘𝑊)‘{𝑋})) |
49 | 45, 48 | sseldd 3893 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑋 ∈ 𝐹) → 𝑋 ∈ ((LSpan‘𝑊)‘𝐹)) |
50 | 49 | ex 416 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 𝑋 ∈ (Base‘𝑊)) → (𝑋 ∈ 𝐹 → 𝑋 ∈ ((LSpan‘𝑊)‘𝐹))) |
51 | 50 | con3d 155 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 𝑋 ∈ (Base‘𝑊)) → (¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹) → ¬ 𝑋 ∈ 𝐹)) |
52 | 51 | expimpd 457 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) → ((𝑋 ∈ (Base‘𝑊) ∧ ¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹)) → ¬ 𝑋 ∈ 𝐹)) |
53 | 52 | 3impia 1114 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ (𝑋 ∈ (Base‘𝑊) ∧ ¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹))) → ¬ 𝑋 ∈ 𝐹) |
54 | 41, 53 | syl3an3b 1402 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ¬ 𝑋 ∈ 𝐹) |
55 | | eleq1 2839 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑋 = 𝑥 → (𝑋 ∈ 𝐹 ↔ 𝑥 ∈ 𝐹)) |
56 | 55 | notbid 321 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 = 𝑥 → (¬ 𝑋 ∈ 𝐹 ↔ ¬ 𝑥 ∈ 𝐹)) |
57 | 54, 56 | syl5ibcom 248 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝑋 = 𝑥 → ¬ 𝑥 ∈ 𝐹)) |
58 | 57 | necon2ad 2966 |
. . . . . . . . . . . . . . 15
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝑥 ∈ 𝐹 → 𝑋 ≠ 𝑥)) |
59 | 58 | imp 410 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑥 ∈ 𝐹) → 𝑋 ≠ 𝑥) |
60 | | disjsn2 4605 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ≠ 𝑥 → ({𝑋} ∩ {𝑥}) = ∅) |
61 | 59, 60 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑥 ∈ 𝐹) → ({𝑋} ∩ {𝑥}) = ∅) |
62 | | disj3 4350 |
. . . . . . . . . . . . 13
⊢ (({𝑋} ∩ {𝑥}) = ∅ ↔ {𝑋} = ({𝑋} ∖ {𝑥})) |
63 | 61, 62 | sylib 221 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑥 ∈ 𝐹) → {𝑋} = ({𝑋} ∖ {𝑥})) |
64 | 63 | uneq2d 4068 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑥 ∈ 𝐹) → ((𝐹 ∖ {𝑥}) ∪ {𝑋}) = ((𝐹 ∖ {𝑥}) ∪ ({𝑋} ∖ {𝑥}))) |
65 | | difundir 4185 |
. . . . . . . . . . 11
⊢ ((𝐹 ∪ {𝑋}) ∖ {𝑥}) = ((𝐹 ∖ {𝑥}) ∪ ({𝑋} ∖ {𝑥})) |
66 | 64, 65 | eqtr4di 2811 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑥 ∈ 𝐹) → ((𝐹 ∖ {𝑥}) ∪ {𝑋}) = ((𝐹 ∪ {𝑋}) ∖ {𝑥})) |
67 | 66 | fveq2d 6662 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑥 ∈ 𝐹) → ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋})) = ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))) |
68 | 67 | eleq2d 2837 |
. . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑥 ∈ 𝐹) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋})) ↔ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))) |
69 | 68 | adantrr 716 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋})) ↔ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))) |
70 | | simpl 486 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ LVec ∧ 𝑘 ∈
((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) → 𝑊 ∈ LVec) |
71 | | eldifsn 4677 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈
((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠
(0g‘(Scalar‘𝑊)))) |
72 | 71 | biimpi 219 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈
((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) → (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠
(0g‘(Scalar‘𝑊)))) |
73 | 72 | adantl 485 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ LVec ∧ 𝑘 ∈
((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) → (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠
(0g‘(Scalar‘𝑊)))) |
74 | 2 | sselda 3892 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ (LIndS‘𝑊) ∧ 𝑥 ∈ 𝐹) → 𝑥 ∈ (Base‘𝑊)) |
75 | | eqid 2758 |
. . . . . . . . . . . . . 14
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
76 | 1, 21, 75, 25, 24, 31 | lspsnvs 19954 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ LVec ∧ (𝑘 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠
(0g‘(Scalar‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘{(𝑘( ·𝑠
‘𝑊)𝑥)}) = ((LSpan‘𝑊)‘{𝑥})) |
77 | 70, 73, 74, 76 | syl2an3an 1419 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ LVec ∧ 𝑘 ∈
((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) ∧ (𝐹 ∈ (LIndS‘𝑊) ∧ 𝑥 ∈ 𝐹)) → ((LSpan‘𝑊)‘{(𝑘( ·𝑠
‘𝑊)𝑥)}) = ((LSpan‘𝑊)‘{𝑥})) |
78 | 77 | an42s 660 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → ((LSpan‘𝑊)‘{(𝑘( ·𝑠
‘𝑊)𝑥)}) = ((LSpan‘𝑊)‘{𝑥})) |
79 | 78 | sseq1d 3923 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → (((LSpan‘𝑊)‘{(𝑘( ·𝑠
‘𝑊)𝑥)}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))) |
80 | 79 | 3adantl3 1165 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → (((LSpan‘𝑊)‘{(𝑘( ·𝑠
‘𝑊)𝑥)}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))) |
81 | | eldifi 4032 |
. . . . . . . . . 10
⊢ (𝑘 ∈
((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) → 𝑘 ∈ (Base‘(Scalar‘𝑊))) |
82 | 19 | 3ad2ant1 1130 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑊 ∈ LMod) |
83 | 82 | adantr 484 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)))) → 𝑊 ∈ LMod) |
84 | | snssi 4698 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋 ∈ (Base‘𝑊) → {𝑋} ⊆ (Base‘𝑊)) |
85 | 2, 84, 6 | syl2an 598 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) → (𝐹 ∪ {𝑋}) ⊆ (Base‘𝑊)) |
86 | 85 | ssdifssd 4048 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) → ((𝐹 ∪ {𝑋}) ∖ {𝑥}) ⊆ (Base‘𝑊)) |
87 | 1, 37, 31 | lspcl 19816 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ LMod ∧ ((𝐹 ∪ {𝑋}) ∖ {𝑥}) ⊆ (Base‘𝑊)) → ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ∈ (LSubSp‘𝑊)) |
88 | 19, 86, 87 | syl2an 598 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ LVec ∧ (𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊))) → ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ∈ (LSubSp‘𝑊)) |
89 | 88 | 3impb 1112 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ∈ (LSubSp‘𝑊)) |
90 | 89 | adantr 484 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)))) → ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ∈ (LSubSp‘𝑊)) |
91 | 19 | anim1i 617 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ LVec ∧ 𝑘 ∈
(Base‘(Scalar‘𝑊))) → (𝑊 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)))) |
92 | 1, 21, 75, 25 | lmodvscl 19719 |
. . . . . . . . . . . . . . 15
⊢ ((𝑊 ∈ LMod ∧ 𝑘 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑘( ·𝑠
‘𝑊)𝑥) ∈ (Base‘𝑊)) |
93 | 92 | 3expa 1115 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ LMod ∧ 𝑘 ∈
(Base‘(Scalar‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑘( ·𝑠
‘𝑊)𝑥) ∈ (Base‘𝑊)) |
94 | 91, 74, 93 | syl2an 598 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ LVec ∧ 𝑘 ∈
(Base‘(Scalar‘𝑊))) ∧ (𝐹 ∈ (LIndS‘𝑊) ∧ 𝑥 ∈ 𝐹)) → (𝑘( ·𝑠
‘𝑊)𝑥) ∈ (Base‘𝑊)) |
95 | 94 | an42s 660 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)))) → (𝑘( ·𝑠
‘𝑊)𝑥) ∈ (Base‘𝑊)) |
96 | 95 | 3adantl3 1165 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)))) → (𝑘( ·𝑠
‘𝑊)𝑥) ∈ (Base‘𝑊)) |
97 | 1, 37, 31, 83, 90, 96 | lspsnel5 19835 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)))) → ((𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ((LSpan‘𝑊)‘{(𝑘( ·𝑠
‘𝑊)𝑥)}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))) |
98 | 81, 97 | sylanr2 682 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → ((𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ((LSpan‘𝑊)‘{(𝑘( ·𝑠
‘𝑊)𝑥)}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))) |
99 | 82 | adantr 484 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ 𝐹) → 𝑊 ∈ LMod) |
100 | 89 | adantr 484 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ 𝐹) → ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ∈ (LSubSp‘𝑊)) |
101 | 74 | 3ad2antl2 1183 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ 𝐹) → 𝑥 ∈ (Base‘𝑊)) |
102 | 1, 37, 31, 99, 100, 101 | lspsnel5 19835 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑥 ∈ 𝐹) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))) |
103 | 102 | adantrr 716 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))) |
104 | 80, 98, 103 | 3bitr4rd 315 |
. . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ (𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))) |
105 | 3, 104 | syl3anl3 1411 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ (𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))) |
106 | 69, 105 | bitrd 282 |
. . . . . 6
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋})) ↔ (𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))) |
107 | | difsnid 4700 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐹 → ((𝐹 ∖ {𝑥}) ∪ {𝑥}) = 𝐹) |
108 | 107 | fveq2d 6662 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐹 → ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑥})) = ((LSpan‘𝑊)‘𝐹)) |
109 | 108 | eleq2d 2837 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐹 → (𝑋 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑥})) ↔ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹))) |
110 | 109 | ad2antrl 727 |
. . . . . 6
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → (𝑋 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑥})) ↔ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹))) |
111 | 40, 106, 110 | 3imtr3d 296 |
. . . . 5
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → ((𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) → 𝑋 ∈ ((LSpan‘𝑊)‘𝐹))) |
112 | 11, 111 | mtod 201 |
. . . 4
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥 ∈ 𝐹 ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → ¬ (𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))) |
113 | 112 | ralrimivva 3120 |
. . 3
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ∀𝑥 ∈ 𝐹 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))) |
114 | 10 | adantr 484 |
. . . . . 6
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) → ¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹)) |
115 | | difsn 4688 |
. . . . . . . . . . 11
⊢ (¬
𝑋 ∈ 𝐹 → (𝐹 ∖ {𝑋}) = 𝐹) |
116 | 54, 115 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝐹 ∖ {𝑋}) = 𝐹) |
117 | 116 | fveq2d 6662 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋})) = ((LSpan‘𝑊)‘𝐹)) |
118 | 117 | eleq2d 2837 |
. . . . . . . 8
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ((𝑘( ·𝑠
‘𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋})) ↔ (𝑘( ·𝑠
‘𝑊)𝑋) ∈ ((LSpan‘𝑊)‘𝐹))) |
119 | 118 | adantr 484 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) → ((𝑘( ·𝑠
‘𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋})) ↔ (𝑘( ·𝑠
‘𝑊)𝑋) ∈ ((LSpan‘𝑊)‘𝐹))) |
120 | 1, 21, 75, 25, 24, 31 | lspsnvs 19954 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ LVec ∧ (𝑘 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠
(0g‘(Scalar‘𝑊))) ∧ 𝑋 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘{(𝑘( ·𝑠
‘𝑊)𝑋)}) = ((LSpan‘𝑊)‘{𝑋})) |
121 | 120 | 3expa 1115 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ LVec ∧ (𝑘 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠
(0g‘(Scalar‘𝑊)))) ∧ 𝑋 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘{(𝑘( ·𝑠
‘𝑊)𝑋)}) = ((LSpan‘𝑊)‘{𝑋})) |
122 | 121 | an32s 651 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ LVec ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠
(0g‘(Scalar‘𝑊)))) → ((LSpan‘𝑊)‘{(𝑘( ·𝑠
‘𝑊)𝑋)}) = ((LSpan‘𝑊)‘{𝑋})) |
123 | 71, 122 | sylan2b 596 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ LVec ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) → ((LSpan‘𝑊)‘{(𝑘( ·𝑠
‘𝑊)𝑋)}) = ((LSpan‘𝑊)‘{𝑋})) |
124 | 123 | sseq1d 3923 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LVec ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) → (((LSpan‘𝑊)‘{(𝑘( ·𝑠
‘𝑊)𝑋)}) ⊆ ((LSpan‘𝑊)‘𝐹) ↔ ((LSpan‘𝑊)‘{𝑋}) ⊆ ((LSpan‘𝑊)‘𝐹))) |
125 | 124 | 3adantl2 1164 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) → (((LSpan‘𝑊)‘{(𝑘( ·𝑠
‘𝑊)𝑋)}) ⊆ ((LSpan‘𝑊)‘𝐹) ↔ ((LSpan‘𝑊)‘{𝑋}) ⊆ ((LSpan‘𝑊)‘𝐹))) |
126 | 82 | adantr 484 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑊 ∈ LMod) |
127 | 1, 37, 31 | lspcl 19816 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ LMod ∧ 𝐹 ⊆ (Base‘𝑊)) → ((LSpan‘𝑊)‘𝐹) ∈ (LSubSp‘𝑊)) |
128 | 19, 2, 127 | syl2an 598 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) → ((LSpan‘𝑊)‘𝐹) ∈ (LSubSp‘𝑊)) |
129 | 128 | 3adant3 1129 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘𝐹) ∈ (LSubSp‘𝑊)) |
130 | 129 | adantr 484 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → ((LSpan‘𝑊)‘𝐹) ∈ (LSubSp‘𝑊)) |
131 | 1, 21, 75, 25 | lmodvscl 19719 |
. . . . . . . . . . . . . . 15
⊢ ((𝑊 ∈ LMod ∧ 𝑘 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑋 ∈ (Base‘𝑊)) → (𝑘( ·𝑠
‘𝑊)𝑋) ∈ (Base‘𝑊)) |
132 | 131 | 3expa 1115 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ LMod ∧ 𝑘 ∈
(Base‘(Scalar‘𝑊))) ∧ 𝑋 ∈ (Base‘𝑊)) → (𝑘( ·𝑠
‘𝑊)𝑋) ∈ (Base‘𝑊)) |
133 | 132 | an32s 651 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑘( ·𝑠
‘𝑊)𝑋) ∈ (Base‘𝑊)) |
134 | 19, 133 | sylanl1 679 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ LVec ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑘( ·𝑠
‘𝑊)𝑋) ∈ (Base‘𝑊)) |
135 | 134 | 3adantl2 1164 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑘( ·𝑠
‘𝑊)𝑋) ∈ (Base‘𝑊)) |
136 | 1, 37, 31, 126, 130, 135 | lspsnel5 19835 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → ((𝑘( ·𝑠
‘𝑊)𝑋) ∈ ((LSpan‘𝑊)‘𝐹) ↔ ((LSpan‘𝑊)‘{(𝑘( ·𝑠
‘𝑊)𝑋)}) ⊆ ((LSpan‘𝑊)‘𝐹))) |
137 | 81, 136 | sylan2 595 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) → ((𝑘( ·𝑠
‘𝑊)𝑋) ∈ ((LSpan‘𝑊)‘𝐹) ↔ ((LSpan‘𝑊)‘{(𝑘( ·𝑠
‘𝑊)𝑋)}) ⊆ ((LSpan‘𝑊)‘𝐹))) |
138 | | simp3 1135 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑋 ∈ (Base‘𝑊)) |
139 | 1, 37, 31, 82, 129, 138 | lspsnel5 19835 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) → (𝑋 ∈ ((LSpan‘𝑊)‘𝐹) ↔ ((LSpan‘𝑊)‘{𝑋}) ⊆ ((LSpan‘𝑊)‘𝐹))) |
140 | 139 | adantr 484 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) → (𝑋 ∈ ((LSpan‘𝑊)‘𝐹) ↔ ((LSpan‘𝑊)‘{𝑋}) ⊆ ((LSpan‘𝑊)‘𝐹))) |
141 | 125, 137,
140 | 3bitr4d 314 |
. . . . . . . 8
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) → ((𝑘( ·𝑠
‘𝑊)𝑋) ∈ ((LSpan‘𝑊)‘𝐹) ↔ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹))) |
142 | 3, 141 | syl3anl3 1411 |
. . . . . . 7
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) → ((𝑘( ·𝑠
‘𝑊)𝑋) ∈ ((LSpan‘𝑊)‘𝐹) ↔ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹))) |
143 | 119, 142 | bitrd 282 |
. . . . . 6
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) → ((𝑘( ·𝑠
‘𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋})) ↔ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹))) |
144 | 114, 143 | mtbird 328 |
. . . . 5
⊢ (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) → ¬ (𝑘( ·𝑠
‘𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋}))) |
145 | 144 | ralrimiva 3113 |
. . . 4
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋}))) |
146 | | oveq2 7158 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝑘( ·𝑠
‘𝑊)𝑥) = (𝑘( ·𝑠
‘𝑊)𝑋)) |
147 | | sneq 4532 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → {𝑥} = {𝑋}) |
148 | 147 | difeq2d 4028 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → ((𝐹 ∪ {𝑋}) ∖ {𝑥}) = ((𝐹 ∪ {𝑋}) ∖ {𝑋})) |
149 | | difun2 4377 |
. . . . . . . . . . 11
⊢ ((𝐹 ∪ {𝑋}) ∖ {𝑋}) = (𝐹 ∖ {𝑋}) |
150 | 148, 149 | eqtrdi 2809 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → ((𝐹 ∪ {𝑋}) ∖ {𝑥}) = (𝐹 ∖ {𝑋})) |
151 | 150 | fveq2d 6662 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) = ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋}))) |
152 | 146, 151 | eleq12d 2846 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ((𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ (𝑘( ·𝑠
‘𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋})))) |
153 | 152 | notbid 321 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (¬ (𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ¬ (𝑘( ·𝑠
‘𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋})))) |
154 | 153 | ralbidv 3126 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋})))) |
155 | 154 | ralsng 4570 |
. . . . 5
⊢ (𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹)) → (∀𝑥 ∈ {𝑋}∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋})))) |
156 | 155 | 3ad2ant3 1132 |
. . . 4
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (∀𝑥 ∈ {𝑋}∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋})))) |
157 | 145, 156 | mpbird 260 |
. . 3
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ∀𝑥 ∈ {𝑋}∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))) |
158 | | ralunb 4096 |
. . 3
⊢
(∀𝑥 ∈
(𝐹 ∪ {𝑋})∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ (∀𝑥 ∈ 𝐹 ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ∧ ∀𝑥 ∈ {𝑋}∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))) |
159 | 113, 157,
158 | sylanbrc 586 |
. 2
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ∀𝑥 ∈ (𝐹 ∪ {𝑋})∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))) |
160 | 1, 75, 31, 21, 25, 24 | islinds2 20578 |
. . 3
⊢ (𝑊 ∈ LVec → ((𝐹 ∪ {𝑋}) ∈ (LIndS‘𝑊) ↔ ((𝐹 ∪ {𝑋}) ⊆ (Base‘𝑊) ∧ ∀𝑥 ∈ (𝐹 ∪ {𝑋})∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))) |
161 | 160 | 3ad2ant1 1130 |
. 2
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ((𝐹 ∪ {𝑋}) ∈ (LIndS‘𝑊) ↔ ((𝐹 ∪ {𝑋}) ⊆ (Base‘𝑊) ∧ ∀𝑥 ∈ (𝐹 ∪ {𝑋})∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))) |
162 | 8, 159, 161 | mpbir2and 712 |
1
⊢ ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝐹 ∪ {𝑋}) ∈ (LIndS‘𝑊)) |