Mathbox for Brendan Leahy < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindsadd Structured version   Visualization version   GIF version

 Description: In a vector space, the union of an independent set and a vector not in its span is an independent set. (Contributed by Brendan Leahy, 4-Mar-2023.)
Assertion
Ref Expression
lindsadd ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝐹 ∪ {𝑋}) ∈ (LIndS‘𝑊))

Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2758 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
21linds1 20575 . . . 4 (𝐹 ∈ (LIndS‘𝑊) → 𝐹 ⊆ (Base‘𝑊))
3 eldifi 4032 . . . . 5 (𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹)) → 𝑋 ∈ (Base‘𝑊))
43snssd 4699 . . . 4 (𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹)) → {𝑋} ⊆ (Base‘𝑊))
5 unss 4089 . . . . 5 ((𝐹 ⊆ (Base‘𝑊) ∧ {𝑋} ⊆ (Base‘𝑊)) ↔ (𝐹 ∪ {𝑋}) ⊆ (Base‘𝑊))
65biimpi 219 . . . 4 ((𝐹 ⊆ (Base‘𝑊) ∧ {𝑋} ⊆ (Base‘𝑊)) → (𝐹 ∪ {𝑋}) ⊆ (Base‘𝑊))
72, 4, 6syl2an 598 . . 3 ((𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝐹 ∪ {𝑋}) ⊆ (Base‘𝑊))
873adant1 1127 . 2 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝐹 ∪ {𝑋}) ⊆ (Base‘𝑊))
9 eldifn 4033 . . . . . . 7 (𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹)) → ¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹))
1093ad2ant3 1132 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹))
1110adantr 484 . . . . 5 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹))
12 simpll1 1209 . . . . . . . 8 ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) ∧ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋}))) → 𝑊 ∈ LVec)
132ssdifssd 4048 . . . . . . . . . 10 (𝐹 ∈ (LIndS‘𝑊) → (𝐹 ∖ {𝑥}) ⊆ (Base‘𝑊))
14133ad2ant2 1131 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝐹 ∖ {𝑥}) ⊆ (Base‘𝑊))
1514ad2antrr 725 . . . . . . . 8 ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) ∧ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋}))) → (𝐹 ∖ {𝑥}) ⊆ (Base‘𝑊))
1633ad2ant3 1132 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → 𝑋 ∈ (Base‘𝑊))
1716ad2antrr 725 . . . . . . . 8 ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) ∧ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋}))) → 𝑋 ∈ (Base‘𝑊))
18 simpr 488 . . . . . . . . 9 ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) ∧ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋}))) → 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋})))
19 lveclmod 19946 . . . . . . . . . . . . 13 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
2019ad2antrr 725 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑊 ∈ LMod)
21 eqid 2758 . . . . . . . . . . . . . . . 16 (Scalar‘𝑊) = (Scalar‘𝑊)
2221lmodring 19710 . . . . . . . . . . . . . . 15 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
2319, 22syl 17 . . . . . . . . . . . . . 14 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ Ring)
24 eqid 2758 . . . . . . . . . . . . . . 15 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
25 eqid 2758 . . . . . . . . . . . . . . 15 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2624, 25ringelnzr 20107 . . . . . . . . . . . . . 14 (((Scalar‘𝑊) ∈ Ring ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → (Scalar‘𝑊) ∈ NzRing)
2723, 26sylan 583 . . . . . . . . . . . . 13 ((𝑊 ∈ LVec ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → (Scalar‘𝑊) ∈ NzRing)
2827ad2ant2rl 748 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (Scalar‘𝑊) ∈ NzRing)
29 simplr 768 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝐹 ∈ (LIndS‘𝑊))
30 simprl 770 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑥𝐹)
31 eqid 2758 . . . . . . . . . . . . 13 (LSpan‘𝑊) = (LSpan‘𝑊)
3231, 21lindsind2 20584 . . . . . . . . . . . 12 (((𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑥𝐹) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥})))
3320, 28, 29, 30, 32syl211anc 1373 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥})))
34333adantl3 1165 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥})))
3534adantr 484 . . . . . . . . 9 ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) ∧ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋}))) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥})))
3618, 35eldifd 3869 . . . . . . . 8 ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) ∧ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋}))) → 𝑥 ∈ (((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋})) ∖ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥}))))
37 eqid 2758 . . . . . . . . 9 (LSubSp‘𝑊) = (LSubSp‘𝑊)
381, 37, 31lspsolv 19983 . . . . . . . 8 ((𝑊 ∈ LVec ∧ ((𝐹 ∖ {𝑥}) ⊆ (Base‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊) ∧ 𝑥 ∈ (((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋})) ∖ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥}))))) → 𝑋 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑥})))
3912, 15, 17, 36, 38syl13anc 1369 . . . . . . 7 ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) ∧ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋}))) → 𝑋 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑥})))
4039ex 416 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋})) → 𝑋 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑥}))))
41 eldif 3868 . . . . . . . . . . . . . . . . . 18 (𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹)) ↔ (𝑋 ∈ (Base‘𝑊) ∧ ¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹)))
42 snssi 4698 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑋𝐹 → {𝑋} ⊆ 𝐹)
431, 31lspss 19824 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑊 ∈ LMod ∧ 𝐹 ⊆ (Base‘𝑊) ∧ {𝑋} ⊆ 𝐹) → ((LSpan‘𝑊)‘{𝑋}) ⊆ ((LSpan‘𝑊)‘𝐹))
4419, 2, 42, 43syl3an 1157 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋𝐹) → ((LSpan‘𝑊)‘{𝑋}) ⊆ ((LSpan‘𝑊)‘𝐹))
4544ad4ant124 1170 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑋𝐹) → ((LSpan‘𝑊)‘{𝑋}) ⊆ ((LSpan‘𝑊)‘𝐹))
461, 31lspsnid 19833 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑊 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑋 ∈ ((LSpan‘𝑊)‘{𝑋}))
4719, 46sylan 583 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑊 ∈ LVec ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑋 ∈ ((LSpan‘𝑊)‘{𝑋}))
4847ad4ant13 750 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑋𝐹) → 𝑋 ∈ ((LSpan‘𝑊)‘{𝑋}))
4945, 48sseldd 3893 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑋𝐹) → 𝑋 ∈ ((LSpan‘𝑊)‘𝐹))
5049ex 416 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 𝑋 ∈ (Base‘𝑊)) → (𝑋𝐹𝑋 ∈ ((LSpan‘𝑊)‘𝐹)))
5150con3d 155 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 𝑋 ∈ (Base‘𝑊)) → (¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹) → ¬ 𝑋𝐹))
5251expimpd 457 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) → ((𝑋 ∈ (Base‘𝑊) ∧ ¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹)) → ¬ 𝑋𝐹))
53523impia 1114 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ (𝑋 ∈ (Base‘𝑊) ∧ ¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹))) → ¬ 𝑋𝐹)
5441, 53syl3an3b 1402 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ¬ 𝑋𝐹)
55 eleq1 2839 . . . . . . . . . . . . . . . . . 18 (𝑋 = 𝑥 → (𝑋𝐹𝑥𝐹))
5655notbid 321 . . . . . . . . . . . . . . . . 17 (𝑋 = 𝑥 → (¬ 𝑋𝐹 ↔ ¬ 𝑥𝐹))
5754, 56syl5ibcom 248 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝑋 = 𝑥 → ¬ 𝑥𝐹))
5857necon2ad 2966 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝑥𝐹𝑋𝑥))
5958imp 410 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑥𝐹) → 𝑋𝑥)
60 disjsn2 4605 . . . . . . . . . . . . . 14 (𝑋𝑥 → ({𝑋} ∩ {𝑥}) = ∅)
6159, 60syl 17 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑥𝐹) → ({𝑋} ∩ {𝑥}) = ∅)
62 disj3 4350 . . . . . . . . . . . . 13 (({𝑋} ∩ {𝑥}) = ∅ ↔ {𝑋} = ({𝑋} ∖ {𝑥}))
6361, 62sylib 221 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑥𝐹) → {𝑋} = ({𝑋} ∖ {𝑥}))
6463uneq2d 4068 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑥𝐹) → ((𝐹 ∖ {𝑥}) ∪ {𝑋}) = ((𝐹 ∖ {𝑥}) ∪ ({𝑋} ∖ {𝑥})))
65 difundir 4185 . . . . . . . . . . 11 ((𝐹 ∪ {𝑋}) ∖ {𝑥}) = ((𝐹 ∖ {𝑥}) ∪ ({𝑋} ∖ {𝑥}))
6664, 65eqtr4di 2811 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑥𝐹) → ((𝐹 ∖ {𝑥}) ∪ {𝑋}) = ((𝐹 ∪ {𝑋}) ∖ {𝑥}))
6766fveq2d 6662 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑥𝐹) → ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋})) = ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))
6867eleq2d 2837 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑥𝐹) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋})) ↔ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
6968adantrr 716 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋})) ↔ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
70 simpl 486 . . . . . . . . . . . . 13 ((𝑊 ∈ LVec ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → 𝑊 ∈ LVec)
71 eldifsn 4677 . . . . . . . . . . . . . . 15 (𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))))
7271biimpi 219 . . . . . . . . . . . . . 14 (𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) → (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))))
7372adantl 485 . . . . . . . . . . . . 13 ((𝑊 ∈ LVec ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))))
742sselda 3892 . . . . . . . . . . . . 13 ((𝐹 ∈ (LIndS‘𝑊) ∧ 𝑥𝐹) → 𝑥 ∈ (Base‘𝑊))
75 eqid 2758 . . . . . . . . . . . . . 14 ( ·𝑠𝑊) = ( ·𝑠𝑊)
761, 21, 75, 25, 24, 31lspsnvs 19954 . . . . . . . . . . . . 13 ((𝑊 ∈ LVec ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑥)}) = ((LSpan‘𝑊)‘{𝑥}))
7770, 73, 74, 76syl2an3an 1419 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) ∧ (𝐹 ∈ (LIndS‘𝑊) ∧ 𝑥𝐹)) → ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑥)}) = ((LSpan‘𝑊)‘{𝑥}))
7877an42s 660 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑥)}) = ((LSpan‘𝑊)‘{𝑥}))
7978sseq1d 3923 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑥)}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
80793adantl3 1165 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑥)}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
81 eldifi 4032 . . . . . . . . . 10 (𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
82193ad2ant1 1130 . . . . . . . . . . . 12 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑊 ∈ LMod)
8382adantr 484 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ (Base‘(Scalar‘𝑊)))) → 𝑊 ∈ LMod)
84 snssi 4698 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (Base‘𝑊) → {𝑋} ⊆ (Base‘𝑊))
852, 84, 6syl2an 598 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) → (𝐹 ∪ {𝑋}) ⊆ (Base‘𝑊))
8685ssdifssd 4048 . . . . . . . . . . . . . 14 ((𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) → ((𝐹 ∪ {𝑋}) ∖ {𝑥}) ⊆ (Base‘𝑊))
871, 37, 31lspcl 19816 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ ((𝐹 ∪ {𝑋}) ∖ {𝑥}) ⊆ (Base‘𝑊)) → ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ∈ (LSubSp‘𝑊))
8819, 86, 87syl2an 598 . . . . . . . . . . . . 13 ((𝑊 ∈ LVec ∧ (𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊))) → ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ∈ (LSubSp‘𝑊))
89883impb 1112 . . . . . . . . . . . 12 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ∈ (LSubSp‘𝑊))
9089adantr 484 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ (Base‘(Scalar‘𝑊)))) → ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ∈ (LSubSp‘𝑊))
9119anim1i 617 . . . . . . . . . . . . . 14 ((𝑊 ∈ LVec ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑊 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))))
921, 21, 75, 25lmodvscl 19719 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑘( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
93923expa 1115 . . . . . . . . . . . . . 14 (((𝑊 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑘( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
9491, 74, 93syl2an 598 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝐹 ∈ (LIndS‘𝑊) ∧ 𝑥𝐹)) → (𝑘( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
9594an42s 660 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ (Base‘(Scalar‘𝑊)))) → (𝑘( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
96953adantl3 1165 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ (Base‘(Scalar‘𝑊)))) → (𝑘( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
971, 37, 31, 83, 90, 96lspsnel5 19835 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ (Base‘(Scalar‘𝑊)))) → ((𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑥)}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
9881, 97sylanr2 682 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ((𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑥)}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
9982adantr 484 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑥𝐹) → 𝑊 ∈ LMod)
10089adantr 484 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑥𝐹) → ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ∈ (LSubSp‘𝑊))
101743ad2antl2 1183 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑥𝐹) → 𝑥 ∈ (Base‘𝑊))
1021, 37, 31, 99, 100, 101lspsnel5 19835 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑥𝐹) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
103102adantrr 716 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
10480, 98, 1033bitr4rd 315 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
1053, 104syl3anl3 1411 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
10669, 105bitrd 282 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋})) ↔ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
107 difsnid 4700 . . . . . . . . 9 (𝑥𝐹 → ((𝐹 ∖ {𝑥}) ∪ {𝑥}) = 𝐹)
108107fveq2d 6662 . . . . . . . 8 (𝑥𝐹 → ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑥})) = ((LSpan‘𝑊)‘𝐹))
109108eleq2d 2837 . . . . . . 7 (𝑥𝐹 → (𝑋 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑥})) ↔ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹)))
110109ad2antrl 727 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑋 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑥})) ↔ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹)))
11140, 106, 1103imtr3d 296 . . . . 5 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ((𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) → 𝑋 ∈ ((LSpan‘𝑊)‘𝐹)))
11211, 111mtod 201 . . . 4 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))
113112ralrimivva 3120 . . 3 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ∀𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))
11410adantr 484 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹))
115 difsn 4688 . . . . . . . . . . 11 𝑋𝐹 → (𝐹 ∖ {𝑋}) = 𝐹)
11654, 115syl 17 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝐹 ∖ {𝑋}) = 𝐹)
117116fveq2d 6662 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋})) = ((LSpan‘𝑊)‘𝐹))
118117eleq2d 2837 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ((𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋})) ↔ (𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘𝐹)))
119118adantr 484 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ((𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋})) ↔ (𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘𝐹)))
1201, 21, 75, 25, 24, 31lspsnvs 19954 . . . . . . . . . . . . . 14 ((𝑊 ∈ LVec ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))) ∧ 𝑋 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑋)}) = ((LSpan‘𝑊)‘{𝑋}))
1211203expa 1115 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊)))) ∧ 𝑋 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑋)}) = ((LSpan‘𝑊)‘{𝑋}))
122121an32s 651 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊)))) → ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑋)}) = ((LSpan‘𝑊)‘{𝑋}))
12371, 122sylan2b 596 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑋)}) = ((LSpan‘𝑊)‘{𝑋}))
124123sseq1d 3923 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → (((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑋)}) ⊆ ((LSpan‘𝑊)‘𝐹) ↔ ((LSpan‘𝑊)‘{𝑋}) ⊆ ((LSpan‘𝑊)‘𝐹)))
1251243adantl2 1164 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → (((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑋)}) ⊆ ((LSpan‘𝑊)‘𝐹) ↔ ((LSpan‘𝑊)‘{𝑋}) ⊆ ((LSpan‘𝑊)‘𝐹)))
12682adantr 484 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑊 ∈ LMod)
1271, 37, 31lspcl 19816 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ 𝐹 ⊆ (Base‘𝑊)) → ((LSpan‘𝑊)‘𝐹) ∈ (LSubSp‘𝑊))
12819, 2, 127syl2an 598 . . . . . . . . . . . . 13 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) → ((LSpan‘𝑊)‘𝐹) ∈ (LSubSp‘𝑊))
1291283adant3 1129 . . . . . . . . . . . 12 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘𝐹) ∈ (LSubSp‘𝑊))
130129adantr 484 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → ((LSpan‘𝑊)‘𝐹) ∈ (LSubSp‘𝑊))
1311, 21, 75, 25lmodvscl 19719 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑋 ∈ (Base‘𝑊)) → (𝑘( ·𝑠𝑊)𝑋) ∈ (Base‘𝑊))
1321313expa 1115 . . . . . . . . . . . . . 14 (((𝑊 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 ∈ (Base‘𝑊)) → (𝑘( ·𝑠𝑊)𝑋) ∈ (Base‘𝑊))
133132an32s 651 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑋) ∈ (Base‘𝑊))
13419, 133sylanl1 679 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑋) ∈ (Base‘𝑊))
1351343adantl2 1164 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑋) ∈ (Base‘𝑊))
1361, 37, 31, 126, 130, 135lspsnel5 19835 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → ((𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘𝐹) ↔ ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑋)}) ⊆ ((LSpan‘𝑊)‘𝐹)))
13781, 136sylan2 595 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ((𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘𝐹) ↔ ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑋)}) ⊆ ((LSpan‘𝑊)‘𝐹)))
138 simp3 1135 . . . . . . . . . . 11 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑋 ∈ (Base‘𝑊))
1391, 37, 31, 82, 129, 138lspsnel5 19835 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) → (𝑋 ∈ ((LSpan‘𝑊)‘𝐹) ↔ ((LSpan‘𝑊)‘{𝑋}) ⊆ ((LSpan‘𝑊)‘𝐹)))
140139adantr 484 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → (𝑋 ∈ ((LSpan‘𝑊)‘𝐹) ↔ ((LSpan‘𝑊)‘{𝑋}) ⊆ ((LSpan‘𝑊)‘𝐹)))
141125, 137, 1403bitr4d 314 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ((𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘𝐹) ↔ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹)))
1423, 141syl3anl3 1411 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ((𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘𝐹) ↔ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹)))
143119, 142bitrd 282 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ((𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋})) ↔ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹)))
144114, 143mtbird 328 . . . . 5 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ¬ (𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋})))
145144ralrimiva 3113 . . . 4 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋})))
146 oveq2 7158 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑘( ·𝑠𝑊)𝑥) = (𝑘( ·𝑠𝑊)𝑋))
147 sneq 4532 . . . . . . . . . . . 12 (𝑥 = 𝑋 → {𝑥} = {𝑋})
148147difeq2d 4028 . . . . . . . . . . 11 (𝑥 = 𝑋 → ((𝐹 ∪ {𝑋}) ∖ {𝑥}) = ((𝐹 ∪ {𝑋}) ∖ {𝑋}))
149 difun2 4377 . . . . . . . . . . 11 ((𝐹 ∪ {𝑋}) ∖ {𝑋}) = (𝐹 ∖ {𝑋})
150148, 149eqtrdi 2809 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝐹 ∪ {𝑋}) ∖ {𝑥}) = (𝐹 ∖ {𝑋}))
151150fveq2d 6662 . . . . . . . . 9 (𝑥 = 𝑋 → ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) = ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋})))
152146, 151eleq12d 2846 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ (𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋}))))
153152notbid 321 . . . . . . 7 (𝑥 = 𝑋 → (¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ¬ (𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋}))))
154153ralbidv 3126 . . . . . 6 (𝑥 = 𝑋 → (∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋}))))
155154ralsng 4570 . . . . 5 (𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹)) → (∀𝑥 ∈ {𝑋}∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋}))))
1561553ad2ant3 1132 . . . 4 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (∀𝑥 ∈ {𝑋}∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋}))))
157145, 156mpbird 260 . . 3 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ∀𝑥 ∈ {𝑋}∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))
158 ralunb 4096 . . 3 (∀𝑥 ∈ (𝐹 ∪ {𝑋})∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ (∀𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ∧ ∀𝑥 ∈ {𝑋}∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
159113, 157, 158sylanbrc 586 . 2 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ∀𝑥 ∈ (𝐹 ∪ {𝑋})∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))
1601, 75, 31, 21, 25, 24islinds2 20578 . . 3 (𝑊 ∈ LVec → ((𝐹 ∪ {𝑋}) ∈ (LIndS‘𝑊) ↔ ((𝐹 ∪ {𝑋}) ⊆ (Base‘𝑊) ∧ ∀𝑥 ∈ (𝐹 ∪ {𝑋})∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))))
1611603ad2ant1 1130 . 2 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ((𝐹 ∪ {𝑋}) ∈ (LIndS‘𝑊) ↔ ((𝐹 ∪ {𝑋}) ⊆ (Base‘𝑊) ∧ ∀𝑥 ∈ (𝐹 ∪ {𝑋})∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))))
1628, 159, 161mpbir2and 712 1 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝐹 ∪ {𝑋}) ∈ (LIndS‘𝑊))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  ∀wral 3070   ∖ cdif 3855   ∪ cun 3856   ∩ cin 3857   ⊆ wss 3858  ∅c0 4225  {csn 4522  ‘cfv 6335  (class class class)co 7150  Basecbs 16541  Scalarcsca 16626   ·𝑠 cvsca 16627  0gc0g 16771  Ringcrg 19365  LModclmod 19702  LSubSpclss 19771  LSpanclspn 19811  LVecclvec 19942  NzRingcnzr 20098  LIndSclinds 20570 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-tpos 7902  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-2 11737  df-3 11738  df-ndx 16544  df-slot 16545  df-base 16547  df-sets 16548  df-ress 16549  df-plusg 16636  df-mulr 16637  df-0g 16773  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-grp 18172  df-minusg 18173  df-sbg 18174  df-cmn 18975  df-abl 18976  df-mgp 19308  df-ur 19320  df-ring 19367  df-oppr 19444  df-dvdsr 19462  df-unit 19463  df-invr 19493  df-drng 19572  df-lmod 19704  df-lss 19772  df-lsp 19812  df-lvec 19943  df-nzr 20099  df-lindf 20571  df-linds 20572 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator