Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindsadd Structured version   Visualization version   GIF version

Theorem lindsadd 37676
Description: In a vector space, the union of an independent set and a vector not in its span is an independent set. (Contributed by Brendan Leahy, 4-Mar-2023.)
Assertion
Ref Expression
lindsadd ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝐹 ∪ {𝑋}) ∈ (LIndS‘𝑊))

Proof of Theorem lindsadd
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
21linds1 21751 . . . 4 (𝐹 ∈ (LIndS‘𝑊) → 𝐹 ⊆ (Base‘𝑊))
3 eldifi 4080 . . . . 5 (𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹)) → 𝑋 ∈ (Base‘𝑊))
43snssd 4762 . . . 4 (𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹)) → {𝑋} ⊆ (Base‘𝑊))
5 unss 4139 . . . . 5 ((𝐹 ⊆ (Base‘𝑊) ∧ {𝑋} ⊆ (Base‘𝑊)) ↔ (𝐹 ∪ {𝑋}) ⊆ (Base‘𝑊))
65biimpi 216 . . . 4 ((𝐹 ⊆ (Base‘𝑊) ∧ {𝑋} ⊆ (Base‘𝑊)) → (𝐹 ∪ {𝑋}) ⊆ (Base‘𝑊))
72, 4, 6syl2an 596 . . 3 ((𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝐹 ∪ {𝑋}) ⊆ (Base‘𝑊))
873adant1 1130 . 2 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝐹 ∪ {𝑋}) ⊆ (Base‘𝑊))
9 eldifn 4081 . . . . . . 7 (𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹)) → ¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹))
1093ad2ant3 1135 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹))
1110adantr 480 . . . . 5 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹))
12 simpll1 1213 . . . . . . . 8 ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) ∧ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋}))) → 𝑊 ∈ LVec)
132ssdifssd 4096 . . . . . . . . . 10 (𝐹 ∈ (LIndS‘𝑊) → (𝐹 ∖ {𝑥}) ⊆ (Base‘𝑊))
14133ad2ant2 1134 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝐹 ∖ {𝑥}) ⊆ (Base‘𝑊))
1514ad2antrr 726 . . . . . . . 8 ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) ∧ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋}))) → (𝐹 ∖ {𝑥}) ⊆ (Base‘𝑊))
1633ad2ant3 1135 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → 𝑋 ∈ (Base‘𝑊))
1716ad2antrr 726 . . . . . . . 8 ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) ∧ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋}))) → 𝑋 ∈ (Base‘𝑊))
18 simpr 484 . . . . . . . . 9 ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) ∧ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋}))) → 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋})))
19 lveclmod 21044 . . . . . . . . . . . . 13 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
2019ad2antrr 726 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑊 ∈ LMod)
21 eqid 2733 . . . . . . . . . . . . . . . 16 (Scalar‘𝑊) = (Scalar‘𝑊)
2221lmodring 20805 . . . . . . . . . . . . . . 15 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
2319, 22syl 17 . . . . . . . . . . . . . 14 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ Ring)
24 eqid 2733 . . . . . . . . . . . . . . 15 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
25 eqid 2733 . . . . . . . . . . . . . . 15 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2624, 25ringelnzr 20442 . . . . . . . . . . . . . 14 (((Scalar‘𝑊) ∈ Ring ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → (Scalar‘𝑊) ∈ NzRing)
2723, 26sylan 580 . . . . . . . . . . . . 13 ((𝑊 ∈ LVec ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → (Scalar‘𝑊) ∈ NzRing)
2827ad2ant2rl 749 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (Scalar‘𝑊) ∈ NzRing)
29 simplr 768 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝐹 ∈ (LIndS‘𝑊))
30 simprl 770 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑥𝐹)
31 eqid 2733 . . . . . . . . . . . . 13 (LSpan‘𝑊) = (LSpan‘𝑊)
3231, 21lindsind2 21760 . . . . . . . . . . . 12 (((𝑊 ∈ LMod ∧ (Scalar‘𝑊) ∈ NzRing) ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑥𝐹) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥})))
3320, 28, 29, 30, 32syl211anc 1378 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥})))
34333adantl3 1169 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥})))
3534adantr 480 . . . . . . . . 9 ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) ∧ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋}))) → ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥})))
3618, 35eldifd 3909 . . . . . . . 8 ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) ∧ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋}))) → 𝑥 ∈ (((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋})) ∖ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥}))))
37 eqid 2733 . . . . . . . . 9 (LSubSp‘𝑊) = (LSubSp‘𝑊)
381, 37, 31lspsolv 21084 . . . . . . . 8 ((𝑊 ∈ LVec ∧ ((𝐹 ∖ {𝑥}) ⊆ (Base‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊) ∧ 𝑥 ∈ (((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋})) ∖ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑥}))))) → 𝑋 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑥})))
3912, 15, 17, 36, 38syl13anc 1374 . . . . . . 7 ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) ∧ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋}))) → 𝑋 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑥})))
4039ex 412 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋})) → 𝑋 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑥}))))
41 eldif 3908 . . . . . . . . . . . . . . . . . 18 (𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹)) ↔ (𝑋 ∈ (Base‘𝑊) ∧ ¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹)))
42 snssi 4761 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑋𝐹 → {𝑋} ⊆ 𝐹)
431, 31lspss 20921 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑊 ∈ LMod ∧ 𝐹 ⊆ (Base‘𝑊) ∧ {𝑋} ⊆ 𝐹) → ((LSpan‘𝑊)‘{𝑋}) ⊆ ((LSpan‘𝑊)‘𝐹))
4419, 2, 42, 43syl3an 1160 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋𝐹) → ((LSpan‘𝑊)‘{𝑋}) ⊆ ((LSpan‘𝑊)‘𝐹))
4544ad4ant124 1174 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑋𝐹) → ((LSpan‘𝑊)‘{𝑋}) ⊆ ((LSpan‘𝑊)‘𝐹))
461, 31lspsnid 20930 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑊 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑋 ∈ ((LSpan‘𝑊)‘{𝑋}))
4719, 46sylan 580 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑊 ∈ LVec ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑋 ∈ ((LSpan‘𝑊)‘{𝑋}))
4847ad4ant13 751 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑋𝐹) → 𝑋 ∈ ((LSpan‘𝑊)‘{𝑋}))
4945, 48sseldd 3931 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑋𝐹) → 𝑋 ∈ ((LSpan‘𝑊)‘𝐹))
5049ex 412 . . . . . . . . . . . . . . . . . . . . 21 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 𝑋 ∈ (Base‘𝑊)) → (𝑋𝐹𝑋 ∈ ((LSpan‘𝑊)‘𝐹)))
5150con3d 152 . . . . . . . . . . . . . . . . . . . 20 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ 𝑋 ∈ (Base‘𝑊)) → (¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹) → ¬ 𝑋𝐹))
5251expimpd 453 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) → ((𝑋 ∈ (Base‘𝑊) ∧ ¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹)) → ¬ 𝑋𝐹))
53523impia 1117 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ (𝑋 ∈ (Base‘𝑊) ∧ ¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹))) → ¬ 𝑋𝐹)
5441, 53syl3an3b 1407 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ¬ 𝑋𝐹)
55 eleq1 2821 . . . . . . . . . . . . . . . . . 18 (𝑋 = 𝑥 → (𝑋𝐹𝑥𝐹))
5655notbid 318 . . . . . . . . . . . . . . . . 17 (𝑋 = 𝑥 → (¬ 𝑋𝐹 ↔ ¬ 𝑥𝐹))
5754, 56syl5ibcom 245 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝑋 = 𝑥 → ¬ 𝑥𝐹))
5857necon2ad 2944 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝑥𝐹𝑋𝑥))
5958imp 406 . . . . . . . . . . . . . 14 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑥𝐹) → 𝑋𝑥)
60 disjsn2 4666 . . . . . . . . . . . . . 14 (𝑋𝑥 → ({𝑋} ∩ {𝑥}) = ∅)
6159, 60syl 17 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑥𝐹) → ({𝑋} ∩ {𝑥}) = ∅)
62 disj3 4403 . . . . . . . . . . . . 13 (({𝑋} ∩ {𝑥}) = ∅ ↔ {𝑋} = ({𝑋} ∖ {𝑥}))
6361, 62sylib 218 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑥𝐹) → {𝑋} = ({𝑋} ∖ {𝑥}))
6463uneq2d 4117 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑥𝐹) → ((𝐹 ∖ {𝑥}) ∪ {𝑋}) = ((𝐹 ∖ {𝑥}) ∪ ({𝑋} ∖ {𝑥})))
65 difundir 4240 . . . . . . . . . . 11 ((𝐹 ∪ {𝑋}) ∖ {𝑥}) = ((𝐹 ∖ {𝑥}) ∪ ({𝑋} ∖ {𝑥}))
6664, 65eqtr4di 2786 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑥𝐹) → ((𝐹 ∖ {𝑥}) ∪ {𝑋}) = ((𝐹 ∪ {𝑋}) ∖ {𝑥}))
6766fveq2d 6834 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑥𝐹) → ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋})) = ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))
6867eleq2d 2819 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑥𝐹) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋})) ↔ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
6968adantrr 717 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋})) ↔ 𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
70 simpl 482 . . . . . . . . . . . . 13 ((𝑊 ∈ LVec ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → 𝑊 ∈ LVec)
71 eldifsn 4739 . . . . . . . . . . . . . . 15 (𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ↔ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))))
7271biimpi 216 . . . . . . . . . . . . . 14 (𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) → (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))))
7372adantl 481 . . . . . . . . . . . . 13 ((𝑊 ∈ LVec ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))))
742sselda 3930 . . . . . . . . . . . . 13 ((𝐹 ∈ (LIndS‘𝑊) ∧ 𝑥𝐹) → 𝑥 ∈ (Base‘𝑊))
75 eqid 2733 . . . . . . . . . . . . . 14 ( ·𝑠𝑊) = ( ·𝑠𝑊)
761, 21, 75, 25, 24, 31lspsnvs 21055 . . . . . . . . . . . . 13 ((𝑊 ∈ LVec ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑥)}) = ((LSpan‘𝑊)‘{𝑥}))
7770, 73, 74, 76syl2an3an 1424 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) ∧ (𝐹 ∈ (LIndS‘𝑊) ∧ 𝑥𝐹)) → ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑥)}) = ((LSpan‘𝑊)‘{𝑥}))
7877an42s 661 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑥)}) = ((LSpan‘𝑊)‘{𝑥}))
7978sseq1d 3962 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑥)}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
80793adantl3 1169 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑥)}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
81 eldifi 4080 . . . . . . . . . 10 (𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
82193ad2ant1 1133 . . . . . . . . . . . 12 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑊 ∈ LMod)
8382adantr 480 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ (Base‘(Scalar‘𝑊)))) → 𝑊 ∈ LMod)
84 snssi 4761 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (Base‘𝑊) → {𝑋} ⊆ (Base‘𝑊))
852, 84, 6syl2an 596 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) → (𝐹 ∪ {𝑋}) ⊆ (Base‘𝑊))
8685ssdifssd 4096 . . . . . . . . . . . . . 14 ((𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) → ((𝐹 ∪ {𝑋}) ∖ {𝑥}) ⊆ (Base‘𝑊))
871, 37, 31lspcl 20913 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ ((𝐹 ∪ {𝑋}) ∖ {𝑥}) ⊆ (Base‘𝑊)) → ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ∈ (LSubSp‘𝑊))
8819, 86, 87syl2an 596 . . . . . . . . . . . . 13 ((𝑊 ∈ LVec ∧ (𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊))) → ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ∈ (LSubSp‘𝑊))
89883impb 1114 . . . . . . . . . . . 12 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ∈ (LSubSp‘𝑊))
9089adantr 480 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ (Base‘(Scalar‘𝑊)))) → ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ∈ (LSubSp‘𝑊))
9119anim1i 615 . . . . . . . . . . . . . 14 ((𝑊 ∈ LVec ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑊 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))))
921, 21, 75, 25lmodvscl 20815 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑘( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
93923expa 1118 . . . . . . . . . . . . . 14 (((𝑊 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑥 ∈ (Base‘𝑊)) → (𝑘( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
9491, 74, 93syl2an 596 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝐹 ∈ (LIndS‘𝑊) ∧ 𝑥𝐹)) → (𝑘( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
9594an42s 661 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ (Base‘(Scalar‘𝑊)))) → (𝑘( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
96953adantl3 1169 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ (Base‘(Scalar‘𝑊)))) → (𝑘( ·𝑠𝑊)𝑥) ∈ (Base‘𝑊))
971, 37, 31, 83, 90, 96ellspsn5b 20932 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ (Base‘(Scalar‘𝑊)))) → ((𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑥)}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
9881, 97sylanr2 683 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ((𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑥)}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
9982adantr 480 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑥𝐹) → 𝑊 ∈ LMod)
10089adantr 480 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑥𝐹) → ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ∈ (LSubSp‘𝑊))
101743ad2antl2 1187 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑥𝐹) → 𝑥 ∈ (Base‘𝑊))
1021, 37, 31, 99, 100, 101ellspsn5b 20932 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑥𝐹) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
103102adantrr 717 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
10480, 98, 1033bitr4rd 312 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
1053, 104syl3anl3 1416 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
10669, 105bitrd 279 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑥 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑋})) ↔ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
107 difsnid 4763 . . . . . . . . 9 (𝑥𝐹 → ((𝐹 ∖ {𝑥}) ∪ {𝑥}) = 𝐹)
108107fveq2d 6834 . . . . . . . 8 (𝑥𝐹 → ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑥})) = ((LSpan‘𝑊)‘𝐹))
109108eleq2d 2819 . . . . . . 7 (𝑥𝐹 → (𝑋 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑥})) ↔ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹)))
110109ad2antrl 728 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑋 ∈ ((LSpan‘𝑊)‘((𝐹 ∖ {𝑥}) ∪ {𝑥})) ↔ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹)))
11140, 106, 1103imtr3d 293 . . . . 5 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ((𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) → 𝑋 ∈ ((LSpan‘𝑊)‘𝐹)))
11211, 111mtod 198 . . . 4 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ (𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))
113112ralrimivva 3176 . . 3 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ∀𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))
11410adantr 480 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ¬ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹))
115 difsn 4751 . . . . . . . . . . 11 𝑋𝐹 → (𝐹 ∖ {𝑋}) = 𝐹)
11654, 115syl 17 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝐹 ∖ {𝑋}) = 𝐹)
117116fveq2d 6834 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋})) = ((LSpan‘𝑊)‘𝐹))
118117eleq2d 2819 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ((𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋})) ↔ (𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘𝐹)))
119118adantr 480 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ((𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋})) ↔ (𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘𝐹)))
1201, 21, 75, 25, 24, 31lspsnvs 21055 . . . . . . . . . . . . . 14 ((𝑊 ∈ LVec ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))) ∧ 𝑋 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑋)}) = ((LSpan‘𝑊)‘{𝑋}))
1211203expa 1118 . . . . . . . . . . . . 13 (((𝑊 ∈ LVec ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊)))) ∧ 𝑋 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑋)}) = ((LSpan‘𝑊)‘{𝑋}))
122121an32s 652 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝑋 ∈ (Base‘𝑊)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊)))) → ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑋)}) = ((LSpan‘𝑊)‘{𝑋}))
12371, 122sylan2b 594 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑋)}) = ((LSpan‘𝑊)‘{𝑋}))
124123sseq1d 3962 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → (((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑋)}) ⊆ ((LSpan‘𝑊)‘𝐹) ↔ ((LSpan‘𝑊)‘{𝑋}) ⊆ ((LSpan‘𝑊)‘𝐹)))
1251243adantl2 1168 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → (((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑋)}) ⊆ ((LSpan‘𝑊)‘𝐹) ↔ ((LSpan‘𝑊)‘{𝑋}) ⊆ ((LSpan‘𝑊)‘𝐹)))
12682adantr 480 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → 𝑊 ∈ LMod)
1271, 37, 31lspcl 20913 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ 𝐹 ⊆ (Base‘𝑊)) → ((LSpan‘𝑊)‘𝐹) ∈ (LSubSp‘𝑊))
12819, 2, 127syl2an 596 . . . . . . . . . . . . 13 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊)) → ((LSpan‘𝑊)‘𝐹) ∈ (LSubSp‘𝑊))
1291283adant3 1132 . . . . . . . . . . . 12 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘𝐹) ∈ (LSubSp‘𝑊))
130129adantr 480 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → ((LSpan‘𝑊)‘𝐹) ∈ (LSubSp‘𝑊))
1311, 21, 75, 25lmodvscl 20815 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑋 ∈ (Base‘𝑊)) → (𝑘( ·𝑠𝑊)𝑋) ∈ (Base‘𝑊))
1321313expa 1118 . . . . . . . . . . . . . 14 (((𝑊 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 ∈ (Base‘𝑊)) → (𝑘( ·𝑠𝑊)𝑋) ∈ (Base‘𝑊))
133132an32s 652 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑋) ∈ (Base‘𝑊))
13419, 133sylanl1 680 . . . . . . . . . . . 12 (((𝑊 ∈ LVec ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑋) ∈ (Base‘𝑊))
1351343adantl2 1168 . . . . . . . . . . 11 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑋) ∈ (Base‘𝑊))
1361, 37, 31, 126, 130, 135ellspsn5b 20932 . . . . . . . . . 10 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊))) → ((𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘𝐹) ↔ ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑋)}) ⊆ ((LSpan‘𝑊)‘𝐹)))
13781, 136sylan2 593 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ((𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘𝐹) ↔ ((LSpan‘𝑊)‘{(𝑘( ·𝑠𝑊)𝑋)}) ⊆ ((LSpan‘𝑊)‘𝐹)))
138 simp3 1138 . . . . . . . . . . 11 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) → 𝑋 ∈ (Base‘𝑊))
1391, 37, 31, 82, 129, 138ellspsn5b 20932 . . . . . . . . . 10 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) → (𝑋 ∈ ((LSpan‘𝑊)‘𝐹) ↔ ((LSpan‘𝑊)‘{𝑋}) ⊆ ((LSpan‘𝑊)‘𝐹)))
140139adantr 480 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → (𝑋 ∈ ((LSpan‘𝑊)‘𝐹) ↔ ((LSpan‘𝑊)‘{𝑋}) ⊆ ((LSpan‘𝑊)‘𝐹)))
141125, 137, 1403bitr4d 311 . . . . . . . 8 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ (Base‘𝑊)) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ((𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘𝐹) ↔ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹)))
1423, 141syl3anl3 1416 . . . . . . 7 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ((𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘𝐹) ↔ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹)))
143119, 142bitrd 279 . . . . . 6 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ((𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋})) ↔ 𝑋 ∈ ((LSpan‘𝑊)‘𝐹)))
144114, 143mtbird 325 . . . . 5 (((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))})) → ¬ (𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋})))
145144ralrimiva 3125 . . . 4 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋})))
146 oveq2 7362 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑘( ·𝑠𝑊)𝑥) = (𝑘( ·𝑠𝑊)𝑋))
147 sneq 4587 . . . . . . . . . . . 12 (𝑥 = 𝑋 → {𝑥} = {𝑋})
148147difeq2d 4075 . . . . . . . . . . 11 (𝑥 = 𝑋 → ((𝐹 ∪ {𝑋}) ∖ {𝑥}) = ((𝐹 ∪ {𝑋}) ∖ {𝑋}))
149 difun2 4430 . . . . . . . . . . 11 ((𝐹 ∪ {𝑋}) ∖ {𝑋}) = (𝐹 ∖ {𝑋})
150148, 149eqtrdi 2784 . . . . . . . . . 10 (𝑥 = 𝑋 → ((𝐹 ∪ {𝑋}) ∖ {𝑥}) = (𝐹 ∖ {𝑋}))
151150fveq2d 6834 . . . . . . . . 9 (𝑥 = 𝑋 → ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) = ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋})))
152146, 151eleq12d 2827 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ (𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋}))))
153152notbid 318 . . . . . . 7 (𝑥 = 𝑋 → (¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ¬ (𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋}))))
154153ralbidv 3156 . . . . . 6 (𝑥 = 𝑋 → (∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋}))))
155154ralsng 4629 . . . . 5 (𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹)) → (∀𝑥 ∈ {𝑋}∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋}))))
1561553ad2ant3 1135 . . . 4 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (∀𝑥 ∈ {𝑋}∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑋) ∈ ((LSpan‘𝑊)‘(𝐹 ∖ {𝑋}))))
157145, 156mpbird 257 . . 3 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ∀𝑥 ∈ {𝑋}∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))
158 ralunb 4146 . . 3 (∀𝑥 ∈ (𝐹 ∪ {𝑋})∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ↔ (∀𝑥𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})) ∧ ∀𝑥 ∈ {𝑋}∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥}))))
159113, 157, 158sylanbrc 583 . 2 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ∀𝑥 ∈ (𝐹 ∪ {𝑋})∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))
1601, 75, 31, 21, 25, 24islinds2 21754 . . 3 (𝑊 ∈ LVec → ((𝐹 ∪ {𝑋}) ∈ (LIndS‘𝑊) ↔ ((𝐹 ∪ {𝑋}) ⊆ (Base‘𝑊) ∧ ∀𝑥 ∈ (𝐹 ∪ {𝑋})∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))))
1611603ad2ant1 1133 . 2 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → ((𝐹 ∪ {𝑋}) ∈ (LIndS‘𝑊) ↔ ((𝐹 ∪ {𝑋}) ⊆ (Base‘𝑊) ∧ ∀𝑥 ∈ (𝐹 ∪ {𝑋})∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘((𝐹 ∪ {𝑋}) ∖ {𝑥})))))
1628, 159, 161mpbir2and 713 1 ((𝑊 ∈ LVec ∧ 𝐹 ∈ (LIndS‘𝑊) ∧ 𝑋 ∈ ((Base‘𝑊) ∖ ((LSpan‘𝑊)‘𝐹))) → (𝐹 ∪ {𝑋}) ∈ (LIndS‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  cdif 3895  cun 3896  cin 3897  wss 3898  c0 4282  {csn 4577  cfv 6488  (class class class)co 7354  Basecbs 17124  Scalarcsca 17168   ·𝑠 cvsca 17169  0gc0g 17347  Ringcrg 20155  NzRingcnzr 20431  LModclmod 20797  LSubSpclss 20868  LSpanclspn 20908  LVecclvec 21040  LIndSclinds 21746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-tpos 8164  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-3 12198  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-0g 17349  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-grp 18853  df-minusg 18854  df-sbg 18855  df-cmn 19698  df-abl 19699  df-mgp 20063  df-rng 20075  df-ur 20104  df-ring 20157  df-oppr 20259  df-dvdsr 20279  df-unit 20280  df-invr 20310  df-nzr 20432  df-drng 20650  df-lmod 20799  df-lss 20869  df-lsp 20909  df-lvec 21041  df-lindf 21747  df-linds 21748
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator