MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdmulg Structured version   Visualization version   GIF version

Theorem tmdmulg 22989
Description: In a topological monoid, the n-times group multiple function is continuous. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypotheses
Ref Expression
tgpmulg.j 𝐽 = (TopOpen‘𝐺)
tgpmulg.t · = (.g𝐺)
tgpmulg.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
tmdmulg ((𝐺 ∈ TopMnd ∧ 𝑁 ∈ ℕ0) → (𝑥𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝐽   𝑥, ·   𝑥,𝑁

Proof of Theorem tmdmulg
Dummy variables 𝑘 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7220 . . . . 5 (𝑛 = 0 → (𝑛 · 𝑥) = (0 · 𝑥))
2 tgpmulg.b . . . . . 6 𝐵 = (Base‘𝐺)
3 eqid 2737 . . . . . 6 (0g𝐺) = (0g𝐺)
4 tgpmulg.t . . . . . 6 · = (.g𝐺)
52, 3, 4mulg0 18495 . . . . 5 (𝑥𝐵 → (0 · 𝑥) = (0g𝐺))
61, 5sylan9eq 2798 . . . 4 ((𝑛 = 0 ∧ 𝑥𝐵) → (𝑛 · 𝑥) = (0g𝐺))
76mpteq2dva 5150 . . 3 (𝑛 = 0 → (𝑥𝐵 ↦ (𝑛 · 𝑥)) = (𝑥𝐵 ↦ (0g𝐺)))
87eleq1d 2822 . 2 (𝑛 = 0 → ((𝑥𝐵 ↦ (𝑛 · 𝑥)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥𝐵 ↦ (0g𝐺)) ∈ (𝐽 Cn 𝐽)))
9 oveq1 7220 . . . 4 (𝑛 = 𝑘 → (𝑛 · 𝑥) = (𝑘 · 𝑥))
109mpteq2dv 5151 . . 3 (𝑛 = 𝑘 → (𝑥𝐵 ↦ (𝑛 · 𝑥)) = (𝑥𝐵 ↦ (𝑘 · 𝑥)))
1110eleq1d 2822 . 2 (𝑛 = 𝑘 → ((𝑥𝐵 ↦ (𝑛 · 𝑥)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)))
12 oveq1 7220 . . . 4 (𝑛 = (𝑘 + 1) → (𝑛 · 𝑥) = ((𝑘 + 1) · 𝑥))
1312mpteq2dv 5151 . . 3 (𝑛 = (𝑘 + 1) → (𝑥𝐵 ↦ (𝑛 · 𝑥)) = (𝑥𝐵 ↦ ((𝑘 + 1) · 𝑥)))
1413eleq1d 2822 . 2 (𝑛 = (𝑘 + 1) → ((𝑥𝐵 ↦ (𝑛 · 𝑥)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥𝐵 ↦ ((𝑘 + 1) · 𝑥)) ∈ (𝐽 Cn 𝐽)))
15 oveq1 7220 . . . 4 (𝑛 = 𝑁 → (𝑛 · 𝑥) = (𝑁 · 𝑥))
1615mpteq2dv 5151 . . 3 (𝑛 = 𝑁 → (𝑥𝐵 ↦ (𝑛 · 𝑥)) = (𝑥𝐵 ↦ (𝑁 · 𝑥)))
1716eleq1d 2822 . 2 (𝑛 = 𝑁 → ((𝑥𝐵 ↦ (𝑛 · 𝑥)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)))
18 tgpmulg.j . . . 4 𝐽 = (TopOpen‘𝐺)
1918, 2tmdtopon 22978 . . 3 (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝐵))
20 tmdmnd 22972 . . . 4 (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd)
212, 3mndidcl 18188 . . . 4 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
2220, 21syl 17 . . 3 (𝐺 ∈ TopMnd → (0g𝐺) ∈ 𝐵)
2319, 19, 22cnmptc 22559 . 2 (𝐺 ∈ TopMnd → (𝑥𝐵 ↦ (0g𝐺)) ∈ (𝐽 Cn 𝐽))
24 oveq2 7221 . . . . 5 (𝑥 = 𝑦 → ((𝑘 + 1) · 𝑥) = ((𝑘 + 1) · 𝑦))
2524cbvmptv 5158 . . . 4 (𝑥𝐵 ↦ ((𝑘 + 1) · 𝑥)) = (𝑦𝐵 ↦ ((𝑘 + 1) · 𝑦))
26 eqid 2737 . . . . . . . 8 (+g𝐺) = (+g𝐺)
272, 4, 26mulgnn0p1 18503 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑘 ∈ ℕ0𝑦𝐵) → ((𝑘 + 1) · 𝑦) = ((𝑘 · 𝑦)(+g𝐺)𝑦))
2820, 27syl3an1 1165 . . . . . 6 ((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0𝑦𝐵) → ((𝑘 + 1) · 𝑦) = ((𝑘 · 𝑦)(+g𝐺)𝑦))
2928ad4ant124 1175 . . . . 5 ((((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0) ∧ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)) ∧ 𝑦𝐵) → ((𝑘 + 1) · 𝑦) = ((𝑘 · 𝑦)(+g𝐺)𝑦))
3029mpteq2dva 5150 . . . 4 (((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0) ∧ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)) → (𝑦𝐵 ↦ ((𝑘 + 1) · 𝑦)) = (𝑦𝐵 ↦ ((𝑘 · 𝑦)(+g𝐺)𝑦)))
3125, 30syl5eq 2790 . . 3 (((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0) ∧ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)) → (𝑥𝐵 ↦ ((𝑘 + 1) · 𝑥)) = (𝑦𝐵 ↦ ((𝑘 · 𝑦)(+g𝐺)𝑦)))
32 simpll 767 . . . 4 (((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0) ∧ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)) → 𝐺 ∈ TopMnd)
3332, 19syl 17 . . . 4 (((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0) ∧ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)) → 𝐽 ∈ (TopOn‘𝐵))
34 oveq2 7221 . . . . . 6 (𝑥 = 𝑦 → (𝑘 · 𝑥) = (𝑘 · 𝑦))
3534cbvmptv 5158 . . . . 5 (𝑥𝐵 ↦ (𝑘 · 𝑥)) = (𝑦𝐵 ↦ (𝑘 · 𝑦))
36 simpr 488 . . . . 5 (((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0) ∧ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)) → (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽))
3735, 36eqeltrrid 2843 . . . 4 (((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0) ∧ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)) → (𝑦𝐵 ↦ (𝑘 · 𝑦)) ∈ (𝐽 Cn 𝐽))
3833cnmptid 22558 . . . 4 (((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0) ∧ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)) → (𝑦𝐵𝑦) ∈ (𝐽 Cn 𝐽))
3918, 26, 32, 33, 37, 38cnmpt1plusg 22984 . . 3 (((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0) ∧ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)) → (𝑦𝐵 ↦ ((𝑘 · 𝑦)(+g𝐺)𝑦)) ∈ (𝐽 Cn 𝐽))
4031, 39eqeltrd 2838 . 2 (((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0) ∧ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)) → (𝑥𝐵 ↦ ((𝑘 + 1) · 𝑥)) ∈ (𝐽 Cn 𝐽))
418, 11, 14, 17, 23, 40nn0indd 12274 1 ((𝐺 ∈ TopMnd ∧ 𝑁 ∈ ℕ0) → (𝑥𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  cmpt 5135  cfv 6380  (class class class)co 7213  0cc0 10729  1c1 10730   + caddc 10732  0cn0 12090  Basecbs 16760  +gcplusg 16802  TopOpenctopn 16926  0gc0g 16944  Mndcmnd 18173  .gcmg 18488  TopOnctopon 21807   Cn ccn 22121  TopMndctmd 22967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-seq 13575  df-0g 16946  df-topgen 16948  df-plusf 18113  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mulg 18489  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cn 22124  df-cnp 22125  df-tx 22459  df-tmd 22969
This theorem is referenced by:  tgpmulg  22990
  Copyright terms: Public domain W3C validator