MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdmulg Structured version   Visualization version   GIF version

Theorem tmdmulg 24116
Description: In a topological monoid, the n-times group multiple function is continuous. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypotheses
Ref Expression
tgpmulg.j 𝐽 = (TopOpen‘𝐺)
tgpmulg.t · = (.g𝐺)
tgpmulg.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
tmdmulg ((𝐺 ∈ TopMnd ∧ 𝑁 ∈ ℕ0) → (𝑥𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝐽   𝑥, ·   𝑥,𝑁

Proof of Theorem tmdmulg
Dummy variables 𝑘 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7438 . . . . 5 (𝑛 = 0 → (𝑛 · 𝑥) = (0 · 𝑥))
2 tgpmulg.b . . . . . 6 𝐵 = (Base‘𝐺)
3 eqid 2735 . . . . . 6 (0g𝐺) = (0g𝐺)
4 tgpmulg.t . . . . . 6 · = (.g𝐺)
52, 3, 4mulg0 19105 . . . . 5 (𝑥𝐵 → (0 · 𝑥) = (0g𝐺))
61, 5sylan9eq 2795 . . . 4 ((𝑛 = 0 ∧ 𝑥𝐵) → (𝑛 · 𝑥) = (0g𝐺))
76mpteq2dva 5248 . . 3 (𝑛 = 0 → (𝑥𝐵 ↦ (𝑛 · 𝑥)) = (𝑥𝐵 ↦ (0g𝐺)))
87eleq1d 2824 . 2 (𝑛 = 0 → ((𝑥𝐵 ↦ (𝑛 · 𝑥)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥𝐵 ↦ (0g𝐺)) ∈ (𝐽 Cn 𝐽)))
9 oveq1 7438 . . . 4 (𝑛 = 𝑘 → (𝑛 · 𝑥) = (𝑘 · 𝑥))
109mpteq2dv 5250 . . 3 (𝑛 = 𝑘 → (𝑥𝐵 ↦ (𝑛 · 𝑥)) = (𝑥𝐵 ↦ (𝑘 · 𝑥)))
1110eleq1d 2824 . 2 (𝑛 = 𝑘 → ((𝑥𝐵 ↦ (𝑛 · 𝑥)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)))
12 oveq1 7438 . . . 4 (𝑛 = (𝑘 + 1) → (𝑛 · 𝑥) = ((𝑘 + 1) · 𝑥))
1312mpteq2dv 5250 . . 3 (𝑛 = (𝑘 + 1) → (𝑥𝐵 ↦ (𝑛 · 𝑥)) = (𝑥𝐵 ↦ ((𝑘 + 1) · 𝑥)))
1413eleq1d 2824 . 2 (𝑛 = (𝑘 + 1) → ((𝑥𝐵 ↦ (𝑛 · 𝑥)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥𝐵 ↦ ((𝑘 + 1) · 𝑥)) ∈ (𝐽 Cn 𝐽)))
15 oveq1 7438 . . . 4 (𝑛 = 𝑁 → (𝑛 · 𝑥) = (𝑁 · 𝑥))
1615mpteq2dv 5250 . . 3 (𝑛 = 𝑁 → (𝑥𝐵 ↦ (𝑛 · 𝑥)) = (𝑥𝐵 ↦ (𝑁 · 𝑥)))
1716eleq1d 2824 . 2 (𝑛 = 𝑁 → ((𝑥𝐵 ↦ (𝑛 · 𝑥)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)))
18 tgpmulg.j . . . 4 𝐽 = (TopOpen‘𝐺)
1918, 2tmdtopon 24105 . . 3 (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝐵))
20 tmdmnd 24099 . . . 4 (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd)
212, 3mndidcl 18775 . . . 4 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
2220, 21syl 17 . . 3 (𝐺 ∈ TopMnd → (0g𝐺) ∈ 𝐵)
2319, 19, 22cnmptc 23686 . 2 (𝐺 ∈ TopMnd → (𝑥𝐵 ↦ (0g𝐺)) ∈ (𝐽 Cn 𝐽))
24 oveq2 7439 . . . . 5 (𝑥 = 𝑦 → ((𝑘 + 1) · 𝑥) = ((𝑘 + 1) · 𝑦))
2524cbvmptv 5261 . . . 4 (𝑥𝐵 ↦ ((𝑘 + 1) · 𝑥)) = (𝑦𝐵 ↦ ((𝑘 + 1) · 𝑦))
26 eqid 2735 . . . . . . . 8 (+g𝐺) = (+g𝐺)
272, 4, 26mulgnn0p1 19116 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑘 ∈ ℕ0𝑦𝐵) → ((𝑘 + 1) · 𝑦) = ((𝑘 · 𝑦)(+g𝐺)𝑦))
2820, 27syl3an1 1162 . . . . . 6 ((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0𝑦𝐵) → ((𝑘 + 1) · 𝑦) = ((𝑘 · 𝑦)(+g𝐺)𝑦))
2928ad4ant124 1172 . . . . 5 ((((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0) ∧ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)) ∧ 𝑦𝐵) → ((𝑘 + 1) · 𝑦) = ((𝑘 · 𝑦)(+g𝐺)𝑦))
3029mpteq2dva 5248 . . . 4 (((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0) ∧ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)) → (𝑦𝐵 ↦ ((𝑘 + 1) · 𝑦)) = (𝑦𝐵 ↦ ((𝑘 · 𝑦)(+g𝐺)𝑦)))
3125, 30eqtrid 2787 . . 3 (((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0) ∧ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)) → (𝑥𝐵 ↦ ((𝑘 + 1) · 𝑥)) = (𝑦𝐵 ↦ ((𝑘 · 𝑦)(+g𝐺)𝑦)))
32 simpll 767 . . . 4 (((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0) ∧ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)) → 𝐺 ∈ TopMnd)
3332, 19syl 17 . . . 4 (((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0) ∧ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)) → 𝐽 ∈ (TopOn‘𝐵))
34 oveq2 7439 . . . . . 6 (𝑥 = 𝑦 → (𝑘 · 𝑥) = (𝑘 · 𝑦))
3534cbvmptv 5261 . . . . 5 (𝑥𝐵 ↦ (𝑘 · 𝑥)) = (𝑦𝐵 ↦ (𝑘 · 𝑦))
36 simpr 484 . . . . 5 (((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0) ∧ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)) → (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽))
3735, 36eqeltrrid 2844 . . . 4 (((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0) ∧ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)) → (𝑦𝐵 ↦ (𝑘 · 𝑦)) ∈ (𝐽 Cn 𝐽))
3833cnmptid 23685 . . . 4 (((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0) ∧ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)) → (𝑦𝐵𝑦) ∈ (𝐽 Cn 𝐽))
3918, 26, 32, 33, 37, 38cnmpt1plusg 24111 . . 3 (((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0) ∧ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)) → (𝑦𝐵 ↦ ((𝑘 · 𝑦)(+g𝐺)𝑦)) ∈ (𝐽 Cn 𝐽))
4031, 39eqeltrd 2839 . 2 (((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0) ∧ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)) → (𝑥𝐵 ↦ ((𝑘 + 1) · 𝑥)) ∈ (𝐽 Cn 𝐽))
418, 11, 14, 17, 23, 40nn0indd 12713 1 ((𝐺 ∈ TopMnd ∧ 𝑁 ∈ ℕ0) → (𝑥𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cmpt 5231  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154   + caddc 11156  0cn0 12524  Basecbs 17245  +gcplusg 17298  TopOpenctopn 17468  0gc0g 17486  Mndcmnd 18760  .gcmg 19098  TopOnctopon 22932   Cn ccn 23248  TopMndctmd 24094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-seq 14040  df-0g 17488  df-topgen 17490  df-plusf 18665  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mulg 19099  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cn 23251  df-cnp 23252  df-tx 23586  df-tmd 24096
This theorem is referenced by:  tgpmulg  24117
  Copyright terms: Public domain W3C validator