MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdmulg Structured version   Visualization version   GIF version

Theorem tmdmulg 24035
Description: In a topological monoid, the n-times group multiple function is continuous. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypotheses
Ref Expression
tgpmulg.j 𝐽 = (TopOpen‘𝐺)
tgpmulg.t · = (.g𝐺)
tgpmulg.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
tmdmulg ((𝐺 ∈ TopMnd ∧ 𝑁 ∈ ℕ0) → (𝑥𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝐽   𝑥, ·   𝑥,𝑁

Proof of Theorem tmdmulg
Dummy variables 𝑘 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7417 . . . . 5 (𝑛 = 0 → (𝑛 · 𝑥) = (0 · 𝑥))
2 tgpmulg.b . . . . . 6 𝐵 = (Base‘𝐺)
3 eqid 2736 . . . . . 6 (0g𝐺) = (0g𝐺)
4 tgpmulg.t . . . . . 6 · = (.g𝐺)
52, 3, 4mulg0 19062 . . . . 5 (𝑥𝐵 → (0 · 𝑥) = (0g𝐺))
61, 5sylan9eq 2791 . . . 4 ((𝑛 = 0 ∧ 𝑥𝐵) → (𝑛 · 𝑥) = (0g𝐺))
76mpteq2dva 5219 . . 3 (𝑛 = 0 → (𝑥𝐵 ↦ (𝑛 · 𝑥)) = (𝑥𝐵 ↦ (0g𝐺)))
87eleq1d 2820 . 2 (𝑛 = 0 → ((𝑥𝐵 ↦ (𝑛 · 𝑥)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥𝐵 ↦ (0g𝐺)) ∈ (𝐽 Cn 𝐽)))
9 oveq1 7417 . . . 4 (𝑛 = 𝑘 → (𝑛 · 𝑥) = (𝑘 · 𝑥))
109mpteq2dv 5220 . . 3 (𝑛 = 𝑘 → (𝑥𝐵 ↦ (𝑛 · 𝑥)) = (𝑥𝐵 ↦ (𝑘 · 𝑥)))
1110eleq1d 2820 . 2 (𝑛 = 𝑘 → ((𝑥𝐵 ↦ (𝑛 · 𝑥)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)))
12 oveq1 7417 . . . 4 (𝑛 = (𝑘 + 1) → (𝑛 · 𝑥) = ((𝑘 + 1) · 𝑥))
1312mpteq2dv 5220 . . 3 (𝑛 = (𝑘 + 1) → (𝑥𝐵 ↦ (𝑛 · 𝑥)) = (𝑥𝐵 ↦ ((𝑘 + 1) · 𝑥)))
1413eleq1d 2820 . 2 (𝑛 = (𝑘 + 1) → ((𝑥𝐵 ↦ (𝑛 · 𝑥)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥𝐵 ↦ ((𝑘 + 1) · 𝑥)) ∈ (𝐽 Cn 𝐽)))
15 oveq1 7417 . . . 4 (𝑛 = 𝑁 → (𝑛 · 𝑥) = (𝑁 · 𝑥))
1615mpteq2dv 5220 . . 3 (𝑛 = 𝑁 → (𝑥𝐵 ↦ (𝑛 · 𝑥)) = (𝑥𝐵 ↦ (𝑁 · 𝑥)))
1716eleq1d 2820 . 2 (𝑛 = 𝑁 → ((𝑥𝐵 ↦ (𝑛 · 𝑥)) ∈ (𝐽 Cn 𝐽) ↔ (𝑥𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)))
18 tgpmulg.j . . . 4 𝐽 = (TopOpen‘𝐺)
1918, 2tmdtopon 24024 . . 3 (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝐵))
20 tmdmnd 24018 . . . 4 (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd)
212, 3mndidcl 18732 . . . 4 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
2220, 21syl 17 . . 3 (𝐺 ∈ TopMnd → (0g𝐺) ∈ 𝐵)
2319, 19, 22cnmptc 23605 . 2 (𝐺 ∈ TopMnd → (𝑥𝐵 ↦ (0g𝐺)) ∈ (𝐽 Cn 𝐽))
24 oveq2 7418 . . . . 5 (𝑥 = 𝑦 → ((𝑘 + 1) · 𝑥) = ((𝑘 + 1) · 𝑦))
2524cbvmptv 5230 . . . 4 (𝑥𝐵 ↦ ((𝑘 + 1) · 𝑥)) = (𝑦𝐵 ↦ ((𝑘 + 1) · 𝑦))
26 eqid 2736 . . . . . . . 8 (+g𝐺) = (+g𝐺)
272, 4, 26mulgnn0p1 19073 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑘 ∈ ℕ0𝑦𝐵) → ((𝑘 + 1) · 𝑦) = ((𝑘 · 𝑦)(+g𝐺)𝑦))
2820, 27syl3an1 1163 . . . . . 6 ((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0𝑦𝐵) → ((𝑘 + 1) · 𝑦) = ((𝑘 · 𝑦)(+g𝐺)𝑦))
2928ad4ant124 1174 . . . . 5 ((((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0) ∧ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)) ∧ 𝑦𝐵) → ((𝑘 + 1) · 𝑦) = ((𝑘 · 𝑦)(+g𝐺)𝑦))
3029mpteq2dva 5219 . . . 4 (((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0) ∧ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)) → (𝑦𝐵 ↦ ((𝑘 + 1) · 𝑦)) = (𝑦𝐵 ↦ ((𝑘 · 𝑦)(+g𝐺)𝑦)))
3125, 30eqtrid 2783 . . 3 (((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0) ∧ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)) → (𝑥𝐵 ↦ ((𝑘 + 1) · 𝑥)) = (𝑦𝐵 ↦ ((𝑘 · 𝑦)(+g𝐺)𝑦)))
32 simpll 766 . . . 4 (((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0) ∧ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)) → 𝐺 ∈ TopMnd)
3332, 19syl 17 . . . 4 (((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0) ∧ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)) → 𝐽 ∈ (TopOn‘𝐵))
34 oveq2 7418 . . . . . 6 (𝑥 = 𝑦 → (𝑘 · 𝑥) = (𝑘 · 𝑦))
3534cbvmptv 5230 . . . . 5 (𝑥𝐵 ↦ (𝑘 · 𝑥)) = (𝑦𝐵 ↦ (𝑘 · 𝑦))
36 simpr 484 . . . . 5 (((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0) ∧ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)) → (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽))
3735, 36eqeltrrid 2840 . . . 4 (((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0) ∧ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)) → (𝑦𝐵 ↦ (𝑘 · 𝑦)) ∈ (𝐽 Cn 𝐽))
3833cnmptid 23604 . . . 4 (((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0) ∧ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)) → (𝑦𝐵𝑦) ∈ (𝐽 Cn 𝐽))
3918, 26, 32, 33, 37, 38cnmpt1plusg 24030 . . 3 (((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0) ∧ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)) → (𝑦𝐵 ↦ ((𝑘 · 𝑦)(+g𝐺)𝑦)) ∈ (𝐽 Cn 𝐽))
4031, 39eqeltrd 2835 . 2 (((𝐺 ∈ TopMnd ∧ 𝑘 ∈ ℕ0) ∧ (𝑥𝐵 ↦ (𝑘 · 𝑥)) ∈ (𝐽 Cn 𝐽)) → (𝑥𝐵 ↦ ((𝑘 + 1) · 𝑥)) ∈ (𝐽 Cn 𝐽))
418, 11, 14, 17, 23, 40nn0indd 12695 1 ((𝐺 ∈ TopMnd ∧ 𝑁 ∈ ℕ0) → (𝑥𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5206  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135   + caddc 11137  0cn0 12506  Basecbs 17233  +gcplusg 17276  TopOpenctopn 17440  0gc0g 17458  Mndcmnd 18717  .gcmg 19055  TopOnctopon 22853   Cn ccn 23167  TopMndctmd 24013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-seq 14025  df-0g 17460  df-topgen 17462  df-plusf 18622  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mulg 19056  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cn 23170  df-cnp 23171  df-tx 23505  df-tmd 24015
This theorem is referenced by:  tgpmulg  24036
  Copyright terms: Public domain W3C validator