MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcf Structured version   Visualization version   GIF version

Theorem cnfcf 23193
Description: Continuity of a function in terms of cluster points of a function. (Contributed by Jeff Hankins, 28-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
cnfcf ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fClus 𝑓)(𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹))))
Distinct variable groups:   𝑥,𝑓,𝐹   𝑓,𝐽,𝑥   𝑓,𝐾,𝑥   𝑓,𝑋,𝑥   𝑓,𝑌,𝑥

Proof of Theorem cnfcf
StepHypRef Expression
1 cncnp 22431 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
2 simplr 766 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝑋) → 𝐹:𝑋𝑌)
3 cnpfcf 23192 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))))
43ad4ant124 1172 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))))
52, 4mpbirand 704 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹))))
65ralbidva 3111 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑥𝑋𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹))))
7 ralcom 3166 . . . . 5 (∀𝑥𝑋𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) ↔ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥𝑋 (𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))
8 eqid 2738 . . . . . . . . . . . 12 𝐽 = 𝐽
98fclselbas 23167 . . . . . . . . . . 11 (𝑥 ∈ (𝐽 fClus 𝑓) → 𝑥 𝐽)
10 toponuni 22063 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1110ad2antrr 723 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → 𝑋 = 𝐽)
1211eleq2d 2824 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝑥𝑋𝑥 𝐽))
139, 12syl5ibr 245 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝑥 ∈ (𝐽 fClus 𝑓) → 𝑥𝑋))
1413pm4.71rd 563 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝑥 ∈ (𝐽 fClus 𝑓) ↔ (𝑥𝑋𝑥 ∈ (𝐽 fClus 𝑓))))
1514imbi1d 342 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) ↔ ((𝑥𝑋𝑥 ∈ (𝐽 fClus 𝑓)) → (𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹))))
16 impexp 451 . . . . . . . 8 (((𝑥𝑋𝑥 ∈ (𝐽 fClus 𝑓)) → (𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) ↔ (𝑥𝑋 → (𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹))))
1715, 16bitrdi 287 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) ↔ (𝑥𝑋 → (𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))))
1817ralbidv2 3110 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥 ∈ (𝐽 fClus 𝑓)(𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹) ↔ ∀𝑥𝑋 (𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹))))
1918ralbidv 3112 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fClus 𝑓)(𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹) ↔ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥𝑋 (𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹))))
207, 19bitr4id 290 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥𝑋𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) ↔ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fClus 𝑓)(𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))
216, 20bitrd 278 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fClus 𝑓)(𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))
2221pm5.32da 579 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fClus 𝑓)(𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹))))
231, 22bitrd 278 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fClus 𝑓)(𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064   cuni 4839  wf 6429  cfv 6433  (class class class)co 7275  TopOnctopon 22059   Cn ccn 22375   CnP ccnp 22376  Filcfil 22996   fClus cfcls 23087   fClusf cfcf 23088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-fin 8737  df-fi 9170  df-topgen 17154  df-fbas 20594  df-fg 20595  df-top 22043  df-topon 22060  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-cn 22378  df-cnp 22379  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-fcls 23092  df-fcf 23093
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator