Proof of Theorem cnfcf
Step | Hyp | Ref
| Expression |
1 | | cncnp 22339 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))) |
2 | | simplr 765 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝑋) → 𝐹:𝑋⟶𝑌) |
3 | | cnpfcf 23100 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑥 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹))))) |
4 | 3 | ad4ant124 1171 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹))))) |
5 | 2, 4 | mpbirand 703 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))) |
6 | 5 | ralbidva 3119 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑥 ∈ 𝑋 ∀𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))) |
7 | | ralcom 3280 |
. . . . 5
⊢
(∀𝑥 ∈
𝑋 ∀𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) ↔ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ 𝑋 (𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹))) |
8 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ ∪ 𝐽 =
∪ 𝐽 |
9 | 8 | fclselbas 23075 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐽 fClus 𝑓) → 𝑥 ∈ ∪ 𝐽) |
10 | | toponuni 21971 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
11 | 10 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → 𝑋 = ∪ 𝐽) |
12 | 11 | eleq2d 2824 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (𝑥 ∈ 𝑋 ↔ 𝑥 ∈ ∪ 𝐽)) |
13 | 9, 12 | syl5ibr 245 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (𝑥 ∈ (𝐽 fClus 𝑓) → 𝑥 ∈ 𝑋)) |
14 | 13 | pm4.71rd 562 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (𝑥 ∈ (𝐽 fClus 𝑓) ↔ (𝑥 ∈ 𝑋 ∧ 𝑥 ∈ (𝐽 fClus 𝑓)))) |
15 | 14 | imbi1d 341 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → ((𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) ↔ ((𝑥 ∈ 𝑋 ∧ 𝑥 ∈ (𝐽 fClus 𝑓)) → (𝐹‘𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))) |
16 | | impexp 450 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝑋 ∧ 𝑥 ∈ (𝐽 fClus 𝑓)) → (𝐹‘𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) ↔ (𝑥 ∈ 𝑋 → (𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))) |
17 | 15, 16 | bitrdi 286 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → ((𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) ↔ (𝑥 ∈ 𝑋 → (𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹))))) |
18 | 17 | ralbidv2 3118 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ (𝐽 fClus 𝑓)(𝐹‘𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹) ↔ ∀𝑥 ∈ 𝑋 (𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))) |
19 | 18 | ralbidv 3120 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fClus 𝑓)(𝐹‘𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹) ↔ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ 𝑋 (𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))) |
20 | 7, 19 | bitr4id 289 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ 𝑋 ∀𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹‘𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) ↔ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fClus 𝑓)(𝐹‘𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹))) |
21 | 6, 20 | bitrd 278 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fClus 𝑓)(𝐹‘𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹))) |
22 | 21 | pm5.32da 578 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fClus 𝑓)(𝐹‘𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))) |
23 | 1, 22 | bitrd 278 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fClus 𝑓)(𝐹‘𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))) |