MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcf Structured version   Visualization version   GIF version

Theorem cnfcf 22578
Description: Continuity of a function in terms of cluster points of a function. (Contributed by Jeff Hankins, 28-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
cnfcf ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fClus 𝑓)(𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹))))
Distinct variable groups:   𝑥,𝑓,𝐹   𝑓,𝐽,𝑥   𝑓,𝐾,𝑥   𝑓,𝑋,𝑥   𝑓,𝑌,𝑥

Proof of Theorem cnfcf
StepHypRef Expression
1 cncnp 21816 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))))
2 simplr 765 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝑋) → 𝐹:𝑋𝑌)
3 cnpfcf 22577 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))))
43ad4ant124 1165 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))))
52, 4mpbirand 703 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹))))
65ralbidva 3193 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑥𝑋𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹))))
7 eqid 2818 . . . . . . . . . . . 12 𝐽 = 𝐽
87fclselbas 22552 . . . . . . . . . . 11 (𝑥 ∈ (𝐽 fClus 𝑓) → 𝑥 𝐽)
9 toponuni 21450 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
109ad2antrr 722 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → 𝑋 = 𝐽)
1110eleq2d 2895 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝑥𝑋𝑥 𝐽))
128, 11syl5ibr 247 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝑥 ∈ (𝐽 fClus 𝑓) → 𝑥𝑋))
1312pm4.71rd 563 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝑥 ∈ (𝐽 fClus 𝑓) ↔ (𝑥𝑋𝑥 ∈ (𝐽 fClus 𝑓))))
1413imbi1d 343 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) ↔ ((𝑥𝑋𝑥 ∈ (𝐽 fClus 𝑓)) → (𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹))))
15 impexp 451 . . . . . . . 8 (((𝑥𝑋𝑥 ∈ (𝐽 fClus 𝑓)) → (𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) ↔ (𝑥𝑋 → (𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹))))
1614, 15syl6bb 288 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) ↔ (𝑥𝑋 → (𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))))
1716ralbidv2 3192 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥 ∈ (𝐽 fClus 𝑓)(𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹) ↔ ∀𝑥𝑋 (𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹))))
1817ralbidv 3194 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fClus 𝑓)(𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹) ↔ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥𝑋 (𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹))))
19 ralcom 3351 . . . . 5 (∀𝑥𝑋𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) ↔ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥𝑋 (𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))
2018, 19syl6rbbr 291 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥𝑋𝑓 ∈ (Fil‘𝑋)(𝑥 ∈ (𝐽 fClus 𝑓) → (𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)) ↔ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fClus 𝑓)(𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))
216, 20bitrd 280 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥) ↔ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fClus 𝑓)(𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹)))
2221pm5.32da 579 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fClus 𝑓)(𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹))))
231, 22bitrd 280 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fClus 𝑓)(𝐹𝑥) ∈ ((𝐾 fClusf 𝑓)‘𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135   cuni 4830  wf 6344  cfv 6348  (class class class)co 7145  TopOnctopon 21446   Cn ccn 21760   CnP ccnp 21761  Filcfil 22381   fClus cfcls 22472   fClusf cfcf 22473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-fin 8501  df-fi 8863  df-topgen 16705  df-fbas 20470  df-fg 20471  df-top 21430  df-topon 21447  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-cn 21763  df-cnp 21764  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-fcls 22477  df-fcf 22478
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator