MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxin Structured version   Visualization version   GIF version

Theorem ixxin 13401
Description: Intersection of two intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.)
Hypotheses
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
ixxin.2 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑧 ∈ ℝ*) → (if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧 ↔ (𝐴𝑅𝑧𝐶𝑅𝑧)))
ixxin.3 ((𝑧 ∈ ℝ*𝐵 ∈ ℝ*𝐷 ∈ ℝ*) → (𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷) ↔ (𝑧𝑆𝐵𝑧𝑆𝐷)))
Assertion
Ref Expression
ixxin (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴𝑂𝐵) ∩ (𝐶𝑂𝐷)) = (if(𝐴𝐶, 𝐶, 𝐴)𝑂if(𝐵𝐷, 𝐵, 𝐷)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑦,𝑧)

Proof of Theorem ixxin
StepHypRef Expression
1 inrab 4322 . . 3 ({𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝐵)} ∩ {𝑧 ∈ ℝ* ∣ (𝐶𝑅𝑧𝑧𝑆𝐷)}) = {𝑧 ∈ ℝ* ∣ ((𝐴𝑅𝑧𝑧𝑆𝐵) ∧ (𝐶𝑅𝑧𝑧𝑆𝐷))}
2 ixx.1 . . . . 5 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
32ixxval 13392 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝑂𝐵) = {𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝐵)})
42ixxval 13392 . . . 4 ((𝐶 ∈ ℝ*𝐷 ∈ ℝ*) → (𝐶𝑂𝐷) = {𝑧 ∈ ℝ* ∣ (𝐶𝑅𝑧𝑧𝑆𝐷)})
53, 4ineqan12d 4230 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴𝑂𝐵) ∩ (𝐶𝑂𝐷)) = ({𝑧 ∈ ℝ* ∣ (𝐴𝑅𝑧𝑧𝑆𝐵)} ∩ {𝑧 ∈ ℝ* ∣ (𝐶𝑅𝑧𝑧𝑆𝐷)}))
6 ixxin.2 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑧 ∈ ℝ*) → (if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧 ↔ (𝐴𝑅𝑧𝐶𝑅𝑧)))
76ad4ant124 1172 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝑧 ∈ ℝ*) → (if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧 ↔ (𝐴𝑅𝑧𝐶𝑅𝑧)))
8 ixxin.3 . . . . . . . . . 10 ((𝑧 ∈ ℝ*𝐵 ∈ ℝ*𝐷 ∈ ℝ*) → (𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷) ↔ (𝑧𝑆𝐵𝑧𝑆𝐷)))
983expb 1119 . . . . . . . . 9 ((𝑧 ∈ ℝ* ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) → (𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷) ↔ (𝑧𝑆𝐵𝑧𝑆𝐷)))
109ancoms 458 . . . . . . . 8 (((𝐵 ∈ ℝ*𝐷 ∈ ℝ*) ∧ 𝑧 ∈ ℝ*) → (𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷) ↔ (𝑧𝑆𝐵𝑧𝑆𝐷)))
1110adantll 714 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝑧 ∈ ℝ*) → (𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷) ↔ (𝑧𝑆𝐵𝑧𝑆𝐷)))
127, 11anbi12d 632 . . . . . 6 ((((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝑧 ∈ ℝ*) → ((if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷)) ↔ ((𝐴𝑅𝑧𝐶𝑅𝑧) ∧ (𝑧𝑆𝐵𝑧𝑆𝐷))))
13 an4 656 . . . . . 6 (((𝐴𝑅𝑧𝑧𝑆𝐵) ∧ (𝐶𝑅𝑧𝑧𝑆𝐷)) ↔ ((𝐴𝑅𝑧𝐶𝑅𝑧) ∧ (𝑧𝑆𝐵𝑧𝑆𝐷)))
1412, 13bitr4di 289 . . . . 5 ((((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) ∧ 𝑧 ∈ ℝ*) → ((if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷)) ↔ ((𝐴𝑅𝑧𝑧𝑆𝐵) ∧ (𝐶𝑅𝑧𝑧𝑆𝐷))))
1514rabbidva 3440 . . . 4 (((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) → {𝑧 ∈ ℝ* ∣ (if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷))} = {𝑧 ∈ ℝ* ∣ ((𝐴𝑅𝑧𝑧𝑆𝐵) ∧ (𝐶𝑅𝑧𝑧𝑆𝐷))})
1615an4s 660 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → {𝑧 ∈ ℝ* ∣ (if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷))} = {𝑧 ∈ ℝ* ∣ ((𝐴𝑅𝑧𝑧𝑆𝐵) ∧ (𝐶𝑅𝑧𝑧𝑆𝐷))})
171, 5, 163eqtr4a 2801 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴𝑂𝐵) ∩ (𝐶𝑂𝐷)) = {𝑧 ∈ ℝ* ∣ (if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷))})
18 ifcl 4576 . . . . 5 ((𝐶 ∈ ℝ*𝐴 ∈ ℝ*) → if(𝐴𝐶, 𝐶, 𝐴) ∈ ℝ*)
1918ancoms 458 . . . 4 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → if(𝐴𝐶, 𝐶, 𝐴) ∈ ℝ*)
20 ifcl 4576 . . . 4 ((𝐵 ∈ ℝ*𝐷 ∈ ℝ*) → if(𝐵𝐷, 𝐵, 𝐷) ∈ ℝ*)
212ixxval 13392 . . . 4 ((if(𝐴𝐶, 𝐶, 𝐴) ∈ ℝ* ∧ if(𝐵𝐷, 𝐵, 𝐷) ∈ ℝ*) → (if(𝐴𝐶, 𝐶, 𝐴)𝑂if(𝐵𝐷, 𝐵, 𝐷)) = {𝑧 ∈ ℝ* ∣ (if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷))})
2219, 20, 21syl2an 596 . . 3 (((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐷 ∈ ℝ*)) → (if(𝐴𝐶, 𝐶, 𝐴)𝑂if(𝐵𝐷, 𝐵, 𝐷)) = {𝑧 ∈ ℝ* ∣ (if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷))})
2322an4s 660 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → (if(𝐴𝐶, 𝐶, 𝐴)𝑂if(𝐵𝐷, 𝐵, 𝐷)) = {𝑧 ∈ ℝ* ∣ (if(𝐴𝐶, 𝐶, 𝐴)𝑅𝑧𝑧𝑆if(𝐵𝐷, 𝐵, 𝐷))})
2417, 23eqtr4d 2778 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ*𝐷 ∈ ℝ*)) → ((𝐴𝑂𝐵) ∩ (𝐶𝑂𝐷)) = (if(𝐴𝐶, 𝐶, 𝐴)𝑂if(𝐵𝐷, 𝐵, 𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  {crab 3433  cin 3962  ifcif 4531   class class class wbr 5148  (class class class)co 7431  cmpo 7433  *cxr 11292  cle 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-xr 11297
This theorem is referenced by:  iooin  13418  itgspliticc  25887  cvmliftlem10  35279  iccin  48693
  Copyright terms: Public domain W3C validator